Десятичная система счисления

Поделись знанием:
Перейти к: навигация, поиск
Системы счисления в культуре
Индо-арабская
Арабская
Тамильская
Бирманская
Кхмерская
Лаосская
Монгольская
Тайская
Восточноазиатские
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Эфиопская
Еврейская
Акшара-санкхья
Другие
Вавилонская
Египетская
Этрусская
Римская
Дунайская
Аттическая
Кипу
Майяская
Эгейская
Символы КППУ
Позиционные
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60
Нега-позиционная
Симметричная
Смешанные системы
Фибоначчиева
Непозиционные
Единичная (унарная)

Десяти́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем. В ней используются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, называемые арабскими цифрами. Предполагается, что основание 10 связано с количеством пальцев рук у человека.





Определение

Один десятичный разряд в десятичной системе счисления иногда называют декадой. В цифровой электронике одному десятичному разряду десятичной системы счисления соответствует один десятичный триггер.

Целое число x в десятичной системе счисления представляется в виде конечной линейной комбинации степеней числа 10:

<math>x = \pm \sum_{k=0}^{n-1} a_k 10^k</math>, где <math>\ a_k</math> — это целые числа, называемые цифрами, удовлетворяющие неравенству <math>0 \leq a_k \le 9.</math>

Обычно для ненулевого числа x требуют, чтобы старшая цифра <math>a_{n-1}</math> в десятичном представлении x была также ненулевой.

Например, число сто три представляется в десятичной системе счисления в виде:

<math> 103 = 1 \cdot 10^{2} + 0 \cdot 10^{1} + 3 \cdot 10^{0}.</math>

С помощью n позиций в десятичной системе счисления можно записать целые числа от 0 до <math>10^n-1</math>, то есть, всего <math>10^n</math> различных чисел.

Дробные числа записываются в виде строки цифр с разделителем десятичная запятая, называемой десятичной дробью:

<math>a_{n-1} a_{n-2}\dots a_{1} a_{0},a_{-1} a_{-2}\dots a_{-(m-1)} a_{-m} = \sum_{k=-m}^{n-1} a_k 10^k,</math>

где n — число разрядов целой части числа, m — число разрядов дробной части числа.

Двоично-десятичное кодирование

В двоичных компьютерах применяют двоично-десятичное кодирование десятичных цифр (Binary-Coded Decimal), при этом для одной двоично-десятичной цифры отводится четыре двоичных разряда (двоичная тетрада). Двоично-десятичные числа требуют большего количества битов для своего хранения[1]. Так, четыре двоичных разряда имеют 16 состояний, и при двоично-десятичном кодировании 6 из 16 состояний двоичной тетрады не используются[2].

Таблица сложения в десятичной системе счисления

+ 0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10 11
2 2 3 4 5 6 7 8 9 10 11 12
3 3 4 5 6 7 8 9 10 11 12 13
4 4 5 6 7 8 9 10 11 12 13 14
5 5 6 7 8 9 10 11 12 13 14 15
6 6 7 8 9 10 11 12 13 14 15 16
7 7 8 9 10 11 12 13 14 15 16 17
8 8 9 10 11 12 13 14 15 16 17 18
9 9 10 11 12 13 14 15 16 17 18 19
10 10 11 12 13 14 15 16 17 18 19 20

Таблица умножения в десятичной системе

× 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10
2 0 2 4 6 8 10 12 14 16 18 20
3 0 3 6 9 12 15 18 21 24 27 30
4 0 4 8 12 16 20 24 28 32 36 40
5 0 5 10 15 20 25 30 35 40 45 50
6 0 6 12 18 24 30 36 42 48 54 60
7 0 7 14 21 28 35 42 49 56 63 70
8 0 8 16 24 32 40 48 56 64 72 80
9 0 9 18 27 36 45 54 63 72 81 90
10 0 10 20 30 40 50 60 70 80 90 100

История

Десятичная непозиционная система счисления с единичным кодированием десятичных цифр (от 1 до 1 000 000) возникла во второй половине третьего тысячелетия до н. э. в Древнем Египте (египетская система счисления).

В другой великой цивилизации — вавилонской с её шестидесятеричной системой — за две тысячи лет до н. э. внутри шестидесятеричных разрядов использовалась позиционная десятичная система счисления с единичным кодированием десятичных цифр[3]. Египетская десятичная система повлияла на аналогичную систему в первых европейских системах письма, таких как критские иероглифы, линейное письмо А и линейное письмо Б.

Древнейшая известная запись позиционной десятичной системы обнаружена в Индии в 595 г. Нуль в то время применялся не только в Индии, но и в Китае. В этих старинных системах для записи одинакового числа использовались символы, рядом с которыми дополнительно помечали, в каком разряде они стоят. Потом перестали помечать разряды, но число всё равно можно прочитать, так как у каждого разряда есть своя позиция. А если позиция пустая, её нужно пометить нулём. В поздних вавилонских текстах такой знак стал появляться, но в конце числа его не ставили. Лишь в Индии нуль окончательно занял своё место, эта запись распространилась затем по всему миру.

Индийская нумерация пришла сначала в арабские страны, затем и в Западную Европу. О ней рассказал среднеазиатский математик аль-Хорезми. Простые и удобные правила сложения и вычитания чисел, записанных в позиционной системе, сделали её особенно популярной. А поскольку труд аль-Хорезми был написан на арабском, то за индийской нумерацией в Европе закрепилось неправильное название — «арабская» (арабские цифры).

Кипу инков

Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[4], так и не числовых записей в двоичной системе кодирования[5]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[6]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись[7].

Применение

См. также

Напишите отзыв о статье "Десятичная система счисления"

Ссылки

  1. «AS-Level Computing» 5th edition — P. M. (Pat M.) Heathcote, S. Langfield — 2004—224 pages — Page 18: «A disadvantage of using BSD is that more bits are required to store a number than when using pure binary.» [books.google.com/books?id=GLS60WEfK3QC&pg=PA18&dq=Binary+coded+decimal+Disadvantages&hl=en&ei=DrZtTMa1NpCOOJK4sbAL&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCgQ6AEwAA#v=onepage&q=Binary%20coded%20decimal%20Disadvantages&f=false] ISBN 1-904467-71-7
  2. Schaum’s outline of theory and problems of essential computer mathematics By Seymour Lipschutz, McGraw-Hill. 1987. «Remark: Any 4-bit code allows 2^4 = 16 combinations. Because the 4-bit BCD codes need only 10 of the combinations … 6 combinations remains available» [books.google.com/books?id=Bwhd3xVMotkC&pg=PA38&dq=Binary+coded+decimal+Disadvantages&hl=en&ei=M7dtTNy-NqeTOJHvqPsK&sa=X&oi=book_result&ct=result&resnum=9&ved=0CFwQ6AEwCA#v=onepage&q&f=false] ISBN 0-07-037990-4
  3. [lukped.narod.ru/internet/binary/theor.htm Знакомство с системами счисления]
  4. Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. — New York: Barnes & Noble, 1996. — С. 80. — ISBN 0-88029-595-3.
  5. [news.bbc.co.uk/2/hi/americas/4143968.stm Experts 'decipher' Inca strings]. [www.webcitation.org/611umbKKZ Архивировано из первоисточника 18 августа 2011].
  6. [books.google.com/books?id=TmbajGgliYYC&printsec=frontcover&hl=ru&source=gbs_v2_summary_r&cad=0#v=onepage&q=&f=false Carlos Radicati di Primeglio, Gary Urton. Estudios sobre los quipus. - стр.49].
  7. Dale Buckmaster (1974). «[www.jstor.org/stable/2490534 The Incan Quipu and the Jacobsen Hypothesis]». Journal of Accounting Research 12 (1): 178-181. Проверено 2009-12-24.

Отрывок, характеризующий Десятичная система счисления

– Душенька моя, – сказал он: слово, которое никогда не говорил ей. – Бог милостив. – Она вопросительно, детски укоризненно посмотрела на него.
– Я от тебя ждала помощи, и ничего, ничего, и ты тоже! – сказали ее глаза. Она не удивилась, что он приехал; она не поняла того, что он приехал. Его приезд не имел никакого отношения до ее страданий и облегчения их. Муки вновь начались, и Марья Богдановна посоветовала князю Андрею выйти из комнаты.
Акушер вошел в комнату. Князь Андрей вышел и, встретив княжну Марью, опять подошел к ней. Они шопотом заговорили, но всякую минуту разговор замолкал. Они ждали и прислушивались.
– Allez, mon ami, [Иди, мой друг,] – сказала княжна Марья. Князь Андрей опять пошел к жене, и в соседней комнате сел дожидаясь. Какая то женщина вышла из ее комнаты с испуганным лицом и смутилась, увидав князя Андрея. Он закрыл лицо руками и просидел так несколько минут. Жалкие, беспомощно животные стоны слышались из за двери. Князь Андрей встал, подошел к двери и хотел отворить ее. Дверь держал кто то.
– Нельзя, нельзя! – проговорил оттуда испуганный голос. – Он стал ходить по комнате. Крики замолкли, еще прошло несколько секунд. Вдруг страшный крик – не ее крик, она не могла так кричать, – раздался в соседней комнате. Князь Андрей подбежал к двери; крик замолк, послышался крик ребенка.
«Зачем принесли туда ребенка? подумал в первую секунду князь Андрей. Ребенок? Какой?… Зачем там ребенок? Или это родился ребенок?» Когда он вдруг понял всё радостное значение этого крика, слезы задушили его, и он, облокотившись обеими руками на подоконник, всхлипывая, заплакал, как плачут дети. Дверь отворилась. Доктор, с засученными рукавами рубашки, без сюртука, бледный и с трясущейся челюстью, вышел из комнаты. Князь Андрей обратился к нему, но доктор растерянно взглянул на него и, ни слова не сказав, прошел мимо. Женщина выбежала и, увидав князя Андрея, замялась на пороге. Он вошел в комнату жены. Она мертвая лежала в том же положении, в котором он видел ее пять минут тому назад, и то же выражение, несмотря на остановившиеся глаза и на бледность щек, было на этом прелестном, детском личике с губкой, покрытой черными волосиками.
«Я вас всех люблю и никому дурного не делала, и что вы со мной сделали?» говорило ее прелестное, жалкое, мертвое лицо. В углу комнаты хрюкнуло и пискнуло что то маленькое, красное в белых трясущихся руках Марьи Богдановны.

Через два часа после этого князь Андрей тихими шагами вошел в кабинет к отцу. Старик всё уже знал. Он стоял у самой двери, и, как только она отворилась, старик молча старческими, жесткими руками, как тисками, обхватил шею сына и зарыдал как ребенок.

Через три дня отпевали маленькую княгиню, и, прощаясь с нею, князь Андрей взошел на ступени гроба. И в гробу было то же лицо, хотя и с закрытыми глазами. «Ах, что вы со мной сделали?» всё говорило оно, и князь Андрей почувствовал, что в душе его оторвалось что то, что он виноват в вине, которую ему не поправить и не забыть. Он не мог плакать. Старик тоже вошел и поцеловал ее восковую ручку, спокойно и высоко лежащую на другой, и ему ее лицо сказало: «Ах, что и за что вы это со мной сделали?» И старик сердито отвернулся, увидав это лицо.

Еще через пять дней крестили молодого князя Николая Андреича. Мамушка подбородком придерживала пеленки, в то время, как гусиным перышком священник мазал сморщенные красные ладонки и ступеньки мальчика.
Крестный отец дед, боясь уронить, вздрагивая, носил младенца вокруг жестяной помятой купели и передавал его крестной матери, княжне Марье. Князь Андрей, замирая от страха, чтоб не утопили ребенка, сидел в другой комнате, ожидая окончания таинства. Он радостно взглянул на ребенка, когда ему вынесла его нянюшка, и одобрительно кивнул головой, когда нянюшка сообщила ему, что брошенный в купель вощечок с волосками не потонул, а поплыл по купели.


Участие Ростова в дуэли Долохова с Безуховым было замято стараниями старого графа, и Ростов вместо того, чтобы быть разжалованным, как он ожидал, был определен адъютантом к московскому генерал губернатору. Вследствие этого он не мог ехать в деревню со всем семейством, а оставался при своей новой должности всё лето в Москве. Долохов выздоровел, и Ростов особенно сдружился с ним в это время его выздоровления. Долохов больной лежал у матери, страстно и нежно любившей его. Старушка Марья Ивановна, полюбившая Ростова за его дружбу к Феде, часто говорила ему про своего сына.
– Да, граф, он слишком благороден и чист душою, – говаривала она, – для нашего нынешнего, развращенного света. Добродетели никто не любит, она всем глаза колет. Ну скажите, граф, справедливо это, честно это со стороны Безухова? А Федя по своему благородству любил его, и теперь никогда ничего дурного про него не говорит. В Петербурге эти шалости с квартальным там что то шутили, ведь они вместе делали? Что ж, Безухову ничего, а Федя все на своих плечах перенес! Ведь что он перенес! Положим, возвратили, да ведь как же и не возвратить? Я думаю таких, как он, храбрецов и сынов отечества не много там было. Что ж теперь – эта дуэль! Есть ли чувство, честь у этих людей! Зная, что он единственный сын, вызвать на дуэль и стрелять так прямо! Хорошо, что Бог помиловал нас. И за что же? Ну кто же в наше время не имеет интриги? Что ж, коли он так ревнив? Я понимаю, ведь он прежде мог дать почувствовать, а то год ведь продолжалось. И что же, вызвал на дуэль, полагая, что Федя не будет драться, потому что он ему должен. Какая низость! Какая гадость! Я знаю, вы Федю поняли, мой милый граф, оттого то я вас душой люблю, верьте мне. Его редкие понимают. Это такая высокая, небесная душа!
Сам Долохов часто во время своего выздоровления говорил Ростову такие слова, которых никак нельзя было ожидать от него. – Меня считают злым человеком, я знаю, – говаривал он, – и пускай. Я никого знать не хочу кроме тех, кого люблю; но кого я люблю, того люблю так, что жизнь отдам, а остальных передавлю всех, коли станут на дороге. У меня есть обожаемая, неоцененная мать, два три друга, ты в том числе, а на остальных я обращаю внимание только на столько, на сколько они полезны или вредны. И все почти вредны, в особенности женщины. Да, душа моя, – продолжал он, – мужчин я встречал любящих, благородных, возвышенных; но женщин, кроме продажных тварей – графинь или кухарок, всё равно – я не встречал еще. Я не встречал еще той небесной чистоты, преданности, которых я ищу в женщине. Ежели бы я нашел такую женщину, я бы жизнь отдал за нее. А эти!… – Он сделал презрительный жест. – И веришь ли мне, ежели я еще дорожу жизнью, то дорожу только потому, что надеюсь еще встретить такое небесное существо, которое бы возродило, очистило и возвысило меня. Но ты не понимаешь этого.