Иррациональное число

Поделись знанием:
Перейти к: навигация, поиск

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде дроби <math>\frac{m}{n}</math>, где <math>m</math> — целое число, <math>n</math> — натуральное число. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Множество иррациональных чисел обычно обозначается заглавной латинской буквой <math>\mathbb I</math> в полужирном начертании без заливки. Таким образом: <math>\mathbb I =\R\backslash \Q</math>, то есть множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков, несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа <math>\sqrt 2</math>.





Свойства

  • Сумма двух положительных иррациональных чисел может быть рациональным числом.
  • Иррациональные числа определяют Дедекиндовы сечения во множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Каждое вещественное трансцендентное число является иррациональным.
  • Каждое иррациональное число является либо алгебраическим, либо трансцендентным.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя различными числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел несчётно, является множеством второй категории.[1]

Примеры

Иррациональные числа
γζ(3)ρ — 2 — 3 — 5 — φδs — α — e — π — δ

Иррациональными являются:

  • <math>\sqrt{n}</math> для любого натурального <math>n</math>, не являющегося точным квадратом
  • <math>e^x</math> для любого рационального <math>x\ne 0</math>
  • <math>\ln x</math> для любого положительного рационального <math>x\ne 1</math>
  • <math>\pi</math>, а также <math>\pi^n</math> для любого целого <math>n \ne 0</math>

Примеры доказательства иррациональности

Корень из 2

Допустим противное: <math>\sqrt{2}</math> рационален, то есть представляется в виде дроби <math>\frac{m}{n}</math>, где <math>m</math> — целое число, а <math>n</math> — натуральное число.

Возведём предполагаемое равенство в квадрат:

<math>\sqrt{2} = \frac{m}{n} \Rightarrow 2 = \frac{m^2}{n^2} \Rightarrow m^2 = 2n^2</math>.

В каноническое разложение левой части равенства число 2 входит в чётной степени, а в разложение 2n2 — в нечётной. Поэтому равенство m2=2n2 невозможно. Значит, исходное предположение было неверным, и <math>\sqrt{2}</math> — иррациональное число.

Двоичный логарифм числа 3

Допустим противное: <math>\log_2 3</math> рационален, то есть представляется в виде дроби <math>\frac{m}{n}</math>, где <math>m</math> и <math>n</math> — целые числа. Поскольку <math>\log_2 3 > 0</math>, <math>m</math> и <math>n</math> могут быть выбраны положительными. Тогда

<math>\log_2 3 = \frac{m}{n} \Rightarrow m = n \log_2 3 \Rightarrow 2^m = 2^{n \log_2 3} = \left (2^{\log_2 3}\right )^n = 3^n</math>

Но <math>2^m</math> чётно, а правая часть получившегося равенства нечётна. Получаем противоречие.

e

См. раздел «Доказательство иррациональности» в статье «e».

История

Античность

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. — ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выраженыК:Википедия:Статьи без источников (тип: не указан)[источник не указан 3101 день].

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезокК:Википедия:Статьи без источников (тип: не указан)[источник не указан 3101 день].

Нет точных данных о том, иррациональность какого числа было доказано Гиппасом. Согласно легенде он нашёл его изучая длины сторон пентаграммы. Поэтому разумно предположить, что это было золотое сечениеК:Википедия:Статьи без источников (тип: не указан)[источник не указан 3072 дня].

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Феодор Киренский доказал иррациональность корней натуральных чисел до 17 (исключая, естественно, точные квадраты — 1, 4, 9 и 16), но остановился на этом, так как имевшаяся в его инструментарии алгебра не позволяла доказать иррациональность квадратного корня из 17. По поводу того, каким могло быть это доказательство, историками математики было высказано несколько различных предположений. Согласно наиболее правдоподобному[2] предположению Жана Итара[fr], оно было основано на теореме о том, что нечётное квадратное число делится на восемь с остатком один[3].

Позже Евдокс Книдский (410 или 408 г. до н. э. — 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени — сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.

Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. «Книга 10 Элементов» Евклида посвящена классификации иррациональных величин.

Средние века

Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.

Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:

Рациональной [величиной] является, например, 10, 12, 3%, 6% и так далее, поскольку эти величины произнесены и выражены количественно. Что не рационально, то иррационально, и невозможно произнести или представить соответствующую величину количественно. Например, квадратные корни чисел таких так 10, 15, 20 — не являющихся квадратами.

В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни — иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:

результат сложения иррациональной величины и рациональной, результат вычитания рациональной величины из иррациональной, результат вычитания иррациональной величины из рациональной.

Египетский математик Абу Камил (ок. 850 г. н. э. — ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях — в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. — 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:

Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от неё, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней.

Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV—XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге «Йуктибхаза».

Новое время

В XVII веке в математике прочно укрепились комплексные числа, вклад в изучение которых внесли Абрахам де Муавр (1667—1754) и Леонард Эйлер (1707—1783). Когда теория комплексных чисел в XIX веке стала замкнутой и чёткой, стало возможным классифицировать иррациональные числа на алгебраические и трансцендентные (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы Вейерштрасса, Гейне, Кантора и Дедекинда. Хотя ещё в 1869 году Мерэ начал рассмотрения, схожие с Гейне, именно 1872 год принято считать годом рождения теории. Вейерштрасс, Кантор и Гейне обосновывали свои теории при помощи бесконечных рядов, в то время как Дедекинд работал с (ныне так называемым) Дедекиндовым сечением множества вещественных чисел, разделяя все рациональные числа на два множества с определёнными характеристическими свойствами.

Цепные дроби, тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века — в работах Лагранжа. Дирихле также внёс значительный вклад в развитие теории цепных дробей.

В 1761 году Ламберт показал, что π не может быть рационально, а также что eⁿ иррационально при любом ненулевом рациональном n. Хотя доказательство Ламберта можно назвать незавершённым, принято считать его достаточно строгим, особенно учитывая время его написания. Лежандр в 1794 году, после введения функции Бесселя — Клиффорда, показал, что π² иррационально, откуда иррациональность π следует тривиально (рациональное число в квадрате дало бы рациональное). Существование трансцендентных чисел было доказано Лиувиллем в 1844—1851 годах. Позже Георг Кантор (1873) показал их существование, используя другой метод, и обосновал, что любой интервал вещественного ряда содержит бесконечно много трансцендентных чисел. Шарль Эрмит доказал в 1873 году, что e трансцендентно, а Фердинанд Линдеман в 1882 году, основываясь на этом результате, показал трансцендентность π. Доказательство Линдеманна было затем упрощено Вейерштрассом в 1885 году, ещё более упрощено Давидом Гильбертом в 1893 году и, наконец, доведено до почти элементарного Адольфом Гурвицем и Паулем Горданом.

См. также

Напишите отзыв о статье "Иррациональное число"

Примечания

  1. В. А. Ильин, В. А. Садовничий, Бл. Х. Сендов. Глава 2. Вещественные числа // [sci-lib.com/book000401.html Математический анализ] / Под ред. А. Н. Тихонова. — 3-е изд., перераб. и доп. — М.: Проспект, 2006. — Т. 1. — С. 64. — 672 с. — ISBN 5-482-00445-7.
  2. А. И. Щетников. [www.nsu.ru/classics/Alogoi.pdf Как древнегреческие математики доказывали иррациональность.]
  3. Jean Itard. [www.worldcat.org/title/les-livres-arithmetiques-deuclide/oclc/299912286 Les livres arithmétiques d'Euclide.]. — Paris: Hermann, 1961.


К:Википедия:Статьи без источников (тип: не указан) </math>) • ПериодыВычислимыеАрифметические |заголовок2=
Вещественные числа
и их расширения

|список2=Вещественные (<math>\scriptstyle\mathbb{R}</math>) • Комплексные (<math>\scriptstyle\mathbb{C}</math>) • Кватернионы (<math>\scriptstyle\mathbb{H}</math>) • Числа Кэли (октавы, октонионы) (<math>\scriptstyle\mathbb{O}</math>) • Седенионы (<math>\scriptstyle\mathbb{S}</math>) • АльтернионыДуальныеГиперкомплексныеСупердействительныеГипервещественныеСюрреальные[en]

|заголовок3=
Инструменты расширения
числовых систем

|список3=Процедура Кэли — ДиксонаТеорема ФробениусаТеорема Гурвица

|заголовок4=
Иерархия чисел
|список4=
<center>
<math>1,\;2,\;\ldots</math> Натуральные числа
<math>-1,\;0,\;1,\;\ldots</math> Целые числа
<math>-1,\;1,\;\frac{1}{2},\;\;0{,}12,\frac{2}{3},\;\ldots</math> Рациональные числа
<math>-1,\;1,\;\;0{,}12,\frac{1}{2},\;\pi,\;\sqrt{2},\;\ldots</math> Вещественные числа
<math>-1,\;\frac{1}{2},\;0{,}12,\;\pi,\;3i+2,\;e^{i\pi/3},\;\ldots</math> Комплексные числа
<math>1,\;i,\;j,\;k,\;2i + \pi j-\frac{1}{2}k,\;\dots</math> Кватернионы
<math>1,\;i,\;j,\;k,\;l,\;m,\;n,\;o,\;2 - 5l + \frac{\pi}{3}m,\;\dots</math> Октонионы
<math>1,\;e_1,\;e_2,\;\dots,\;e_{15},\;7e_2 + \frac{2}{5}e_7 - \frac{1}{3}e_{15},\;\dots</math> Седенионы
</center> |заголовок5=
Другие
числовые системы

|список5=Кардинальные числаПорядковые числа (трансфинитные, ординал)p-адическиеСупернатуральные числа

|заголовок6=
См. также

|список6=Двойные числаИррациональные числаТрансцендентные числаЧисловой лучБикватернион

}}

Отрывок, характеризующий Иррациональное число

– Помните, что вы будете отвечать за все последствия, – строго сказал князь Василий, – вы не знаете, что вы делаете.
– Мерзкая женщина! – вскрикнула княжна, неожиданно бросаясь на Анну Михайловну и вырывая портфель.
Князь Василий опустил голову и развел руками.
В эту минуту дверь, та страшная дверь, на которую так долго смотрел Пьер и которая так тихо отворялась, быстро, с шумом откинулась, стукнув об стену, и средняя княжна выбежала оттуда и всплеснула руками.
– Что вы делаете! – отчаянно проговорила она. – II s'en va et vous me laissez seule. [Он умирает, а вы меня оставляете одну.]
Старшая княжна выронила портфель. Анна Михайловна быстро нагнулась и, подхватив спорную вещь, побежала в спальню. Старшая княжна и князь Василий, опомнившись, пошли за ней. Через несколько минут первая вышла оттуда старшая княжна с бледным и сухим лицом и прикушенною нижнею губой. При виде Пьера лицо ее выразило неудержимую злобу.
– Да, радуйтесь теперь, – сказала она, – вы этого ждали.
И, зарыдав, она закрыла лицо платком и выбежала из комнаты.
За княжной вышел князь Василий. Он, шатаясь, дошел до дивана, на котором сидел Пьер, и упал на него, закрыв глаза рукой. Пьер заметил, что он был бледен и что нижняя челюсть его прыгала и тряслась, как в лихорадочной дрожи.
– Ах, мой друг! – сказал он, взяв Пьера за локоть; и в голосе его была искренность и слабость, которых Пьер никогда прежде не замечал в нем. – Сколько мы грешим, сколько мы обманываем, и всё для чего? Мне шестой десяток, мой друг… Ведь мне… Всё кончится смертью, всё. Смерть ужасна. – Он заплакал.
Анна Михайловна вышла последняя. Она подошла к Пьеру тихими, медленными шагами.
– Пьер!… – сказала она.
Пьер вопросительно смотрел на нее. Она поцеловала в лоб молодого человека, увлажая его слезами. Она помолчала.
– II n'est plus… [Его не стало…]
Пьер смотрел на нее через очки.
– Allons, je vous reconduirai. Tachez de pleurer. Rien ne soulage, comme les larmes. [Пойдемте, я вас провожу. Старайтесь плакать: ничто так не облегчает, как слезы.]
Она провела его в темную гостиную и Пьер рад был, что никто там не видел его лица. Анна Михайловна ушла от него, и когда она вернулась, он, подложив под голову руку, спал крепким сном.
На другое утро Анна Михайловна говорила Пьеру:
– Oui, mon cher, c'est une grande perte pour nous tous. Je ne parle pas de vous. Mais Dieu vous soutndra, vous etes jeune et vous voila a la tete d'une immense fortune, je l'espere. Le testament n'a pas ete encore ouvert. Je vous connais assez pour savoir que cela ne vous tourienera pas la tete, mais cela vous impose des devoirs, et il faut etre homme. [Да, мой друг, это великая потеря для всех нас, не говоря о вас. Но Бог вас поддержит, вы молоды, и вот вы теперь, надеюсь, обладатель огромного богатства. Завещание еще не вскрыто. Я довольно вас знаю и уверена, что это не вскружит вам голову; но это налагает на вас обязанности; и надо быть мужчиной.]
Пьер молчал.
– Peut etre plus tard je vous dirai, mon cher, que si je n'avais pas ete la, Dieu sait ce qui serait arrive. Vous savez, mon oncle avant hier encore me promettait de ne pas oublier Boris. Mais il n'a pas eu le temps. J'espere, mon cher ami, que vous remplirez le desir de votre pere. [После я, может быть, расскажу вам, что если б я не была там, то Бог знает, что бы случилось. Вы знаете, что дядюшка третьего дня обещал мне не забыть Бориса, но не успел. Надеюсь, мой друг, вы исполните желание отца.]
Пьер, ничего не понимая и молча, застенчиво краснея, смотрел на княгиню Анну Михайловну. Переговорив с Пьером, Анна Михайловна уехала к Ростовым и легла спать. Проснувшись утром, она рассказывала Ростовым и всем знакомым подробности смерти графа Безухого. Она говорила, что граф умер так, как и она желала бы умереть, что конец его был не только трогателен, но и назидателен; последнее же свидание отца с сыном было до того трогательно, что она не могла вспомнить его без слез, и что она не знает, – кто лучше вел себя в эти страшные минуты: отец ли, который так всё и всех вспомнил в последние минуты и такие трогательные слова сказал сыну, или Пьер, на которого жалко было смотреть, как он был убит и как, несмотря на это, старался скрыть свою печаль, чтобы не огорчить умирающего отца. «C'est penible, mais cela fait du bien; ca eleve l'ame de voir des hommes, comme le vieux comte et son digne fils», [Это тяжело, но это спасительно; душа возвышается, когда видишь таких людей, как старый граф и его достойный сын,] говорила она. О поступках княжны и князя Василья она, не одобряя их, тоже рассказывала, но под большим секретом и шопотом.


В Лысых Горах, имении князя Николая Андреевича Болконского, ожидали с каждым днем приезда молодого князя Андрея с княгиней; но ожидание не нарушало стройного порядка, по которому шла жизнь в доме старого князя. Генерал аншеф князь Николай Андреевич, по прозванию в обществе le roi de Prusse, [король прусский,] с того времени, как при Павле был сослан в деревню, жил безвыездно в своих Лысых Горах с дочерью, княжною Марьей, и при ней компаньонкой, m lle Bourienne. [мадмуазель Бурьен.] И в новое царствование, хотя ему и был разрешен въезд в столицы, он также продолжал безвыездно жить в деревне, говоря, что ежели кому его нужно, то тот и от Москвы полтораста верст доедет до Лысых Гор, а что ему никого и ничего не нужно. Он говорил, что есть только два источника людских пороков: праздность и суеверие, и что есть только две добродетели: деятельность и ум. Он сам занимался воспитанием своей дочери и, чтобы развивать в ней обе главные добродетели, до двадцати лет давал ей уроки алгебры и геометрии и распределял всю ее жизнь в беспрерывных занятиях. Сам он постоянно был занят то писанием своих мемуаров, то выкладками из высшей математики, то точением табакерок на станке, то работой в саду и наблюдением над постройками, которые не прекращались в его имении. Так как главное условие для деятельности есть порядок, то и порядок в его образе жизни был доведен до последней степени точности. Его выходы к столу совершались при одних и тех же неизменных условиях, и не только в один и тот же час, но и минуту. С людьми, окружавшими его, от дочери до слуг, князь был резок и неизменно требователен, и потому, не быв жестоким, он возбуждал к себе страх и почтительность, каких не легко мог бы добиться самый жестокий человек. Несмотря на то, что он был в отставке и не имел теперь никакого значения в государственных делах, каждый начальник той губернии, где было имение князя, считал своим долгом являться к нему и точно так же, как архитектор, садовник или княжна Марья, дожидался назначенного часа выхода князя в высокой официантской. И каждый в этой официантской испытывал то же чувство почтительности и даже страха, в то время как отворялась громадно высокая дверь кабинета и показывалась в напудренном парике невысокая фигурка старика, с маленькими сухими ручками и серыми висячими бровями, иногда, как он насупливался, застилавшими блеск умных и точно молодых блестящих глаз.
В день приезда молодых, утром, по обыкновению, княжна Марья в урочный час входила для утреннего приветствия в официантскую и со страхом крестилась и читала внутренно молитву. Каждый день она входила и каждый день молилась о том, чтобы это ежедневное свидание сошло благополучно.
Сидевший в официантской пудреный старик слуга тихим движением встал и шопотом доложил: «Пожалуйте».
Из за двери слышались равномерные звуки станка. Княжна робко потянула за легко и плавно отворяющуюся дверь и остановилась у входа. Князь работал за станком и, оглянувшись, продолжал свое дело.
Огромный кабинет был наполнен вещами, очевидно, беспрестанно употребляемыми. Большой стол, на котором лежали книги и планы, высокие стеклянные шкафы библиотеки с ключами в дверцах, высокий стол для писания в стоячем положении, на котором лежала открытая тетрадь, токарный станок, с разложенными инструментами и с рассыпанными кругом стружками, – всё выказывало постоянную, разнообразную и порядочную деятельность. По движениям небольшой ноги, обутой в татарский, шитый серебром, сапожок, по твердому налеганию жилистой, сухощавой руки видна была в князе еще упорная и много выдерживающая сила свежей старости. Сделав несколько кругов, он снял ногу с педали станка, обтер стамеску, кинул ее в кожаный карман, приделанный к станку, и, подойдя к столу, подозвал дочь. Он никогда не благословлял своих детей и только, подставив ей щетинистую, еще небритую нынче щеку, сказал, строго и вместе с тем внимательно нежно оглядев ее:
– Здорова?… ну, так садись!
Он взял тетрадь геометрии, писанную его рукой, и подвинул ногой свое кресло.
– На завтра! – сказал он, быстро отыскивая страницу и от параграфа до другого отмечая жестким ногтем.
Княжна пригнулась к столу над тетрадью.
– Постой, письмо тебе, – вдруг сказал старик, доставая из приделанного над столом кармана конверт, надписанный женскою рукой, и кидая его на стол.
Лицо княжны покрылось красными пятнами при виде письма. Она торопливо взяла его и пригнулась к нему.
– От Элоизы? – спросил князь, холодною улыбкой выказывая еще крепкие и желтоватые зубы.
– Да, от Жюли, – сказала княжна, робко взглядывая и робко улыбаясь.
– Еще два письма пропущу, а третье прочту, – строго сказал князь, – боюсь, много вздору пишете. Третье прочту.
– Прочтите хоть это, mon pere, [батюшка,] – отвечала княжна, краснея еще более и подавая ему письмо.
– Третье, я сказал, третье, – коротко крикнул князь, отталкивая письмо, и, облокотившись на стол, пододвинул тетрадь с чертежами геометрии.
– Ну, сударыня, – начал старик, пригнувшись близко к дочери над тетрадью и положив одну руку на спинку кресла, на котором сидела княжна, так что княжна чувствовала себя со всех сторон окруженною тем табачным и старчески едким запахом отца, который она так давно знала. – Ну, сударыня, треугольники эти подобны; изволишь видеть, угол abc…
Княжна испуганно взглядывала на близко от нее блестящие глаза отца; красные пятна переливались по ее лицу, и видно было, что она ничего не понимает и так боится, что страх помешает ей понять все дальнейшие толкования отца, как бы ясны они ни были. Виноват ли был учитель или виновата была ученица, но каждый день повторялось одно и то же: у княжны мутилось в глазах, она ничего не видела, не слышала, только чувствовала близко подле себя сухое лицо строгого отца, чувствовала его дыхание и запах и только думала о том, как бы ей уйти поскорее из кабинета и у себя на просторе понять задачу.
Старик выходил из себя: с грохотом отодвигал и придвигал кресло, на котором сам сидел, делал усилия над собой, чтобы не разгорячиться, и почти всякий раз горячился, бранился, а иногда швырял тетрадью.
Княжна ошиблась ответом.
– Ну, как же не дура! – крикнул князь, оттолкнув тетрадь и быстро отвернувшись, но тотчас же встал, прошелся, дотронулся руками до волос княжны и снова сел.
Он придвинулся и продолжал толкование.
– Нельзя, княжна, нельзя, – сказал он, когда княжна, взяв и закрыв тетрадь с заданными уроками, уже готовилась уходить, – математика великое дело, моя сударыня. А чтобы ты была похожа на наших глупых барынь, я не хочу. Стерпится слюбится. – Он потрепал ее рукой по щеке. – Дурь из головы выскочит.
Она хотела выйти, он остановил ее жестом и достал с высокого стола новую неразрезанную книгу.
– Вот еще какой то Ключ таинства тебе твоя Элоиза посылает. Религиозная. А я ни в чью веру не вмешиваюсь… Просмотрел. Возьми. Ну, ступай, ступай!
Он потрепал ее по плечу и сам запер за нею дверь.
Княжна Марья возвратилась в свою комнату с грустным, испуганным выражением, которое редко покидало ее и делало ее некрасивое, болезненное лицо еще более некрасивым, села за свой письменный стол, уставленный миниатюрными портретами и заваленный тетрадями и книгами. Княжна была столь же беспорядочная, как отец ее порядочен. Она положила тетрадь геометрии и нетерпеливо распечатала письмо. Письмо было от ближайшего с детства друга княжны; друг этот была та самая Жюли Карагина, которая была на именинах у Ростовых:
Жюли писала:
«Chere et excellente amie, quelle chose terrible et effrayante que l'absence! J'ai beau me dire que la moitie de mon existence et de mon bonheur est en vous, que malgre la distance qui nous separe, nos coeurs sont unis par des liens indissolubles; le mien se revolte contre la destinee, et je ne puis, malgre les plaisirs et les distractions qui m'entourent, vaincre une certaine tristesse cachee que je ressens au fond du coeur depuis notre separation. Pourquoi ne sommes nous pas reunies, comme cet ete dans votre grand cabinet sur le canape bleu, le canape a confidences? Pourquoi ne puis je, comme il y a trois mois, puiser de nouvelles forces morales dans votre regard si doux, si calme et si penetrant, regard que j'aimais tant et que je crois voir devant moi, quand je vous ecris».
[Милый и бесценный друг, какая страшная и ужасная вещь разлука! Сколько ни твержу себе, что половина моего существования и моего счастия в вас, что, несмотря на расстояние, которое нас разлучает, сердца наши соединены неразрывными узами, мое сердце возмущается против судьбы, и, несмотря на удовольствия и рассеяния, которые меня окружают, я не могу подавить некоторую скрытую грусть, которую испытываю в глубине сердца со времени нашей разлуки. Отчего мы не вместе, как в прошлое лето, в вашем большом кабинете, на голубом диване, на диване «признаний»? Отчего я не могу, как три месяца тому назад, почерпать новые нравственные силы в вашем взгляде, кротком, спокойном и проницательном, который я так любила и который я вижу перед собой в ту минуту, как пишу вам?]