Искусственный геном

Поделись знанием:
Перейти к: навигация, поиск

Искусственный геном — направление в биологических исследованиях, связанное с генетической модификацией существующих организмов с целью создания организмов с новыми свойствами. В отличие от генной инженерии, искусственный геном состоит из генов, синтезированных химическим путём.

Предполагается, что в перспективе могут быть созданы искусственные геномы не на основе ДНК или с использованием другого набора нуклеотидов и других принципов кодирования, чем в естественных геномах. Таким образом, создание искусственных геномов — одно из направлений синтетической биологии.

При этом следует понимать, что пока речь идет о синтезе генов с естественными генетическими кодами или их небольшими модификациями. Можно синтезировать искусственный ген, кодирующий любой наперед заданный полипептид, но при этом пока невозможно спроектировать принципиально новый полипептид так, чтобы он хотя бы свернулся в белковую глобулу, не говоря уже о том, чтобы получившийся белок начал функционировать как фермент.

В настоящее время высшим достижением в области создания искусственного генома является синтез хромосомы бактерии Mycoplasma mycoides, осуществлённый Крейгом Вентером в 2010 году.





Искусственная хромосома Крейга Вентера (2010 год)

В 2010 году сотрудникам Института Крейга Вентера (англ.) удалось искусственно синтезировать циклическую хромосому бактерии Mycoplasma mycoides размером 1 077 947 нуклеотидных пар[1]. Хромосома была имплантирована в клетку бактерии Mycoplasma capricolum, после деления которой образовалась клетка, полностью управляемая искусственным геномом.

Этот искусственный геном ныне известен под кодовым обозначением JCVI-syn1.0. Он практически полностью повторяет геном одного из штаммов бактерии Mycoplasma mycoides, за исключением нескольких искусственно внедрённых генетических маркеров (англ. watermark, водяные знаки), нескольких удалённых в процессе синтеза незначимых генов и 19 мутаций, возникших в процессе сборки фрагментов ДНК. Клетки с искусственным геномом нормально функционируют и способны к многократным делениям.

Предыстория

Начало работам по искусственному геному положили работы Фредерика Сэнгера и его сотрудников, которым в 1977 году удалось установить полную нуклеотидную последовательность генома бактериофага φX174 длиной 5375 нуклеотидных пар[2]. 18 лет спустя, в 1995 году, группа Крейга Вентера впервые секвенировала геном самовоспроизводящегося организма — бактерии Haemophilus influenzae длиной 1 830 137 пар[3].

За последние 25 лет (1985—2010 годы) скорость секвенирования генома увеличилась как минимум на 8 порядков. Лавинообразное увеличение количества организмов, геном которых был прочитан, породило проблему понимания биологической роли каждого гена в организме. До последнего времени было неясно, содержит ли геном полную информацию о строении организма, и будет ли жизнеспособен организм с химически синтезированным геномом. Другой вопрос, стоявший перед молекулярной биологией, заключался в том, являются ли геномы бактерий минимально необходимыми и каков минимальный набор генов, способный создать живую клетку.

Минимальный геном

В 1996 году Аркадий Мушегян и Евгений Кунин (Национальный центр биотехнологической информации, США) предположили, что 256 ортологичных генов, общих для грамотрицательной бактерии Haemophilus influenzae и грамположительной Mycoplasma genitalium, являются хорошим приближением к минимальному набору генов бактериальной клетки[4]. В 2004 году группа исследователей из университета Валенсии (Испания) предложила набор из 206 кодирующих белки генов, полученный в результате анализа нескольких бактериальных геномов[5].

Учёные из группы Крейга Вентера занимались созданием организма с минимальным искусственно синтезированным геномом, начиная с 1995 года[1]. В 1995 году они секвенировали геном возбудителя заболеваний мочеполовой системы человека Mycoplasma genitalium — минимальный среди известных к настоящему времени организмов, способных к самовоспроизведению. Этот микроорганизм содержит 517 генов, из которых 482 кодируют белки. Полный объём генома составляет 580 тыс. нуклеотидных пар. К 1999 году, анализируя расположение транспозонов в секвенированных геномах, удалось установить, что жизненно необходимыми для организма являются от 265 до 350 генов и более 100 генов имеют неизвестное назначение[6]. Дальнейшие исследования к 2005 году расширили список жизненно необходимых генов до 382[7].

В дальнейшем были обнаружены прокариотические геномы ещё меньшего размера, но все они принадлежат облигатным симбионтам — не способным к автономному существованию организмам.

В 2003 году был секвенирован геном Nanoarchaeum equitans размером 490 885 пар[8]. Установлено также, что несеквенированный геном вида Buchnera имеет длину около 450 тыс. пар[9].

Наименьший из расшифрованных к настоящему моменту бактериальных геномов — геном внутриклеточного эндосимбионта листоблошек бактерии Carsonella, состоящий из 159 662 нуклеотидных пар и содержащий всего 182 гена, кодирующих белки. Этот геном был секвенирован японскими исследователями в 2006 году[10].

Синтез генома Mycoplasma genitalium (2008 год)

Группой Крейга Вентера была разработана технология синтеза больших молекул ДНК на основе химически синтезированных фрагментов размером 5—7 тыс. пар, называемых кассетами (англ. cassette). Объединение фрагментов происходило частично in vitro при помощи соответствующих ферментов, частично путём рекомбинации in vivo в дрожжевой клетке Saccharomyces cerevisiae. Полный синтетический геном успешно клонировался как центромерная плазмида (YCp) в клетках дрожжей[11].

Предпринятая в 2008 году первая попытка создания искусственного генома заключалась в синтезе хромосомы Mycoplasma genitalium длиной 582 970 пар. Перекрывающиеся кассеты размером 5—7 тыс. пар, собранные из химически синтезированных полинуклеотидов, последовательно объединялись при помощи ферментов во фрагменты размером 24, 72 и 144 тыс. пар (1/24, 1/8 и 1/4 генома соответственно). Полная сборка генома из четырёх составляющих осуществлена рекомбинацией в клетке Saccharomyces cerevisiae. Секвенирование полученной хромосомы подтвердило точность синтеза. В качестве прототипа использовалась бактерия M. genitalium подвида G37 (образец MG408), патогенная активность которой была блокирована специальным маркером. Для идентификации искусственного генома в ДНК были внедрены нуклеотидные последовательности, называемые «водяными знаками» (англ. watermark)[11].

Определённые трудности возникли при переносе синтетической хромосомы из клетки-донора (дрожжи) в клетку-реципиент. Отдельной проблемой было удаление из бактериальной клетки исходного генома для замены его синтетическим.

В дальнейших экспериментах от бактерий M. genitalium в качестве генетического прототипа пришлось отказаться из-за характерной для них чрезвычайно низкой скорости роста. В исследованиях, проведённых в 2010 году, в качестве прототипа использовался геном Mycoplasma mycoides подвида capri (GM12), а в качестве реципиента — Mycoplasma capricolum подвида capricolum (CK).

В целях отработки технологии переноса хромосом из клетки дрожжей в клетку-реципиент были разработаны методы клонирования целых хромосом в виде дрожжевых центромерных плазмид. В качестве объекта экспериментов использовалась естественная хромосома M. mycoides. Однако первые попытки переноса хромосомы M. mycoides в клетку M. сapricolum окончились неудачей. Как выяснилось, проблема состояла в системе рестрикции бактериальных клеток. Системы рестрикции M. mycoides и M. сapricolum одинаковы, в них ДНК метилирована, и при непосредственном переносе хромосомы из одной клетки в другую проблем не возникает[12]. ДНК, клонированная в дрожжах, не метилирована и при переносе в M. сapricolum подвергается уничтожению со стороны системы рестрикции. Во избежание этого донорская ДНК метилировалась очищенной метилазой или экстрактом из M. mycoides или M. сapricolum, либо система рестрикции клетки-реципиента просто разрушалась[13].

Синтез генома Mycoplasma mycoides (2010 год)

Вторая попытка синтезировать бактериальный геном была предпринята в 2010 году. В качестве прототипа была выбрана хромосома бактерии Mycoplasma mycoides (подвид capri GM12) объёмом 1,08 млн нуклеотидных пар. Этот искусственный геном получил кодовое обозначение JCVI-syn1.0. Для работы были использованы два генома: CP001621[14] (база данных GenBank), секвенированный группой Дж. Гласса из Института Крейга Вентера в 2007 году[12], и трансгенный геном CP001668[15], секвенированный группой Кэрол Лартик в 2009 году[13]. На базе образца CP001621 были синтезированы кассеты, использованные для дальнейшего синтеза. По окончании секвенирования образца CP001668 была произведена сверка, обнаружившая различия в 95 фрагментах. Различия, признанные биологически значимыми, были скорректированы в уже синтезированных кассетах. 19 различий, не влияющих на жизнедеятельность бактерии, оставлены без изменений. В четырёх областях генома, которые не являются жизненно важными, сформированы 4 метки WM1—WM4 длиной 1246, 1081, 1109 и 1222 пар соответственно. Полученная генная последовательность M. mycoides JCVI syn1.0 была занесена в базу GenBank под кодом CP002027[16].

См. также

Напишите отзыв о статье "Искусственный геном"

Примечания

  1. 1 2 Все материалы данного раздела, кроме абзацев, где источник указан особо, взяты из статьи Daniel G. Gibson, John I. Glass, Carole Lartigue, Vladimir N. Noskov, Ray-Yuan Chuang, et al. (2 July 2010). «[www.sciencemag.org/cgi/reprint/329/5987/52.pdf Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome]». Science 329 (5987): 52-56. DOI:10.1126/science.1190719. [www.scienceonline.org/cgi/content/full/329/5987/52 HTML-версия].
  2. F. Sanger et al. (24 February 1977). «[www.nature.com/nature/journal/v265/n5596/abs/265687a0.html Nucleotide sequence of bacteriophage φX174 DNA]». Nature 265: 687—695. DOI:10.1038/265687a0.
  3. R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R. Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, J.M. Merrick, et al. (28 July 1995). «[www.sciencemag.org/cgi/content/abstract/sci;269/5223/496 Whole-genome random sequencing and assembly of Haemophilus influenzae Rd]». Science 269 (5223): 496—512. DOI:10.1126/science.7542800.
  4. Mushegian А., Koonin Е. (September 1996). «[www.pnas.org/content/93/19/10268.full.pdf A minimal gene set for cellular life derived by comparison of complete bacterial genomes]». PNAS 93: 10268-10273.
  5. Rosario Gil, Francisco J. Silva, Juli Peretó, Andrés Moya (September 2004). «[mmbr.asm.org/cgi/reprint/68/3/518.pdf A minimal gene set for cellular life derived by comparison of complete bacterial genomes]». Microbiology and Molecular Biology Reviews 68 (3): 518-537. DOI:10.1128/MMBR.68.3.518-537.2004.
  6. Clyde A. Hutchison III, Scott N. Peterson, Steven R. Gill, Robin T. Cline, Owen White, Claire M. Fraser, Hamilton O. Smith, J. Craig Venter (10 December 1999). «[www.sciencemag.org/cgi/content/short/286/5447/2165 Global Transposon Mutagenesis and a Minimal Mycoplasma Genome]». Science 286 (5447): 2165 - 2169. DOI:10.1126/science.286.5447.2165.
  7. John I. Glass, Nacyra Assad-Garcia, Nina Alperovich, Shibu Yooseph, Matthew R. Lewis, et al. (January 10, 2006). «[www.pnas.org/content/103/2/425.full.pdf Essential genes of a minimal bacterium]». PNAS 103 (2): 425–430. DOI:10.1073/pnas.0510013103. [www.pnas.org/content/103/2/425.long HTML-версия]. [www.pnas.org/content/103/2/425/suppl/DC1 Supporting Information].
  8. Waters, E. et al. (2003). «[www.pnas.org/content/100/22/12984.full.pdf The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism]». PNAS 100: 12984-12988. DOI:10.1073/pnas.1735403100. [www.pnas.org/content/100/22/12984.full Html-версия].
  9. Rosario Gil, Beatriz Sabater-Muñoz, Amparo Latorre, Francisco J. Silva, Andrés Moya (April 2, 2002). «[www.ncbi.nlm.nih.gov/pmc/articles/PMC123669/pdf/pq0702004454.pdf Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life]». PNAS 99 (7): 4454–4458. DOI:10.1073/pnas.062067299. [www.ncbi.nlm.nih.gov/pmc/articles/PMC123669/ Html-версия].
  10. Atsushi Nakabachi, Atsushi Yamashita, Hidehiro Toh, Hajime Ishikawa, Helen E. Dunbar, et al. (13 October 2006). «[www.bio.georgiasouthern.edu/bio-home/nayduch/carsonella%20160%20kb%20genome.pdf The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella]». Science 314 (5797): 267. DOI:10.1126/science.1134196. Обзор статьи: Марков А. [elementy.ru/news/430360 Прочтен самый маленький геном].
  11. 1 2 Daniel G. Gibson, Gwynedd A. Benders, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova, Holly Baden-Tillson et al. (29 February 2008). «[www.sciencemag.org/cgi/content/abstract/1151721 Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome]». Science 319 (5867): 1215—1220. DOI:10.1126/science.1151721.
  12. 1 2 Carole Lartigue, John I. Glass, Nina Alperovich, Rembert Pieper, Prashanth P. Parmar, et al. (3 August 2007). «[www.bio-nica.info/biblioteca/Lartigue2007GenomeTransplantation.pdf Genome Transplantation in Bacteria: Changing One Species to Another]». Science 317 (5838): 632—638. DOI:10.1126/science.1144622.
  13. 1 2 Carole Lartigue, Sanjay Vashee, Mikkel A. Algire, Ray-Yuan Chuang, Gwynedd A. Benders, et al. (25 September 2009). «[www.sciencemag.org/cgi/content/abstract/1173759 Creating Bacterial Strains from Genomes That Have Been Cloned and Engineered in Yeast]». Science 325 (5948): 1693—1696. DOI:10.1126/science.1173759. [www.bio.davidson.edu/Courses/Molbio/MolStudents/spring2010/DesPain/PaperReview.html Review].
  14. [www.ncbi.nlm.nih.gov/nuccore/256384469 Mycoplasma mycoides subsp. capri str. GM12 transgenic clone tetM-lacZ, complete genome]. GenBank: CP001621.1.
  15. [www.ncbi.nlm.nih.gov/nuccore/256384469 Mycoplasma mycoides subsp. capri str. GM12 transgenic clone deltatypeIIIres, complete genome]. GenBank: CP001668.1.
  16. [www.ncbi.nlm.nih.gov/nuccore/296455217 Synthetic Mycoplasma mycoides JCVI-syn1.0 clone sMmYCp235-1, complete sequence]. GenBank: CP002027.1.

Ссылки

  • [www.science.doe.gov/ober/berac/SynBio.pdf Synthetic Genomes: Technologies and Impact] — A 2004 study completed for the DOE on the subject.
  • Patrick F. Suthers, Madhukar S. Dasika, Vinay Satish Kumar, Gennady Denisov, John I. Glass, et al. (February 2009). «[www.ncbi.nlm.nih.gov/pmc/articles/PMC2633051/pdf/pcbi.1000285.pdf A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, i PS189]». PLoS Computational Biology 5 (2): 1—14. DOI:10.1371/journal.pcbi.1000285.
  • Helena B. Thomaides, Ella J. Davison, Lisa Burston, Hazel Johnson, David R. Brown, et al. (January 2007). «[jb.asm.org/cgi/reprint/189/2/591.pdf Essential Bacterial Functions Encoded by Gene Pairs]». Journal of Bacteriology 189 (2): 591-602. DOI:10.1128/JB.01381-06.
  • [www.ncbi.nlm.nih.gov/sites/entrez?cmd=Link&db=pubmed&dbFrom=PubMed&from_uid=16407165 PubMed Results].
  • Elizabeth Pennisi [news.sciencemag.org/sciencenow/2008/01/24-03.html «Scientists Synthesize a Genome From Scratch»]. ScienceNOW, 24 January 2008.
  • Nicholas Wade [www.nytimes.com/2010/05/21/science/21cell.html?_r=1 «Researchers Say They Created a ‘Synthetic Cell’»]. New York Times, May 20, 2010.
  • Elizabeth Pennisi (21 May 2010). «[www.sciencemag.org/cgi/reprint/328/5981/958.pdf Synthetic Genome Brings New Life to Bacterium]». Science 328: 958-959.
  • [www.sciencedaily.com/releases/2008/01/080124175924.htm «Scientists Create First Synthetic Bacterial Genome — Largest Chemically Defined Structure Synthesized In The Lab»]. Science Daily, January 24, 2008.

Отрывок, характеризующий Искусственный геном

С этого дня началось для князя Андрея вместе с пробуждением от сна – пробуждение от жизни. И относительно продолжительности жизни оно не казалось ему более медленно, чем пробуждение от сна относительно продолжительности сновидения.

Ничего не было страшного и резкого в этом, относительно медленном, пробуждении.
Последние дни и часы его прошли обыкновенно и просто. И княжна Марья и Наташа, не отходившие от него, чувствовали это. Они не плакали, не содрогались и последнее время, сами чувствуя это, ходили уже не за ним (его уже не было, он ушел от них), а за самым близким воспоминанием о нем – за его телом. Чувства обеих были так сильны, что на них не действовала внешняя, страшная сторона смерти, и они не находили нужным растравлять свое горе. Они не плакали ни при нем, ни без него, но и никогда не говорили про него между собой. Они чувствовали, что не могли выразить словами того, что они понимали.
Они обе видели, как он глубже и глубже, медленно и спокойно, опускался от них куда то туда, и обе знали, что это так должно быть и что это хорошо.
Его исповедовали, причастили; все приходили к нему прощаться. Когда ему привели сына, он приложил к нему свои губы и отвернулся, не потому, чтобы ему было тяжело или жалко (княжна Марья и Наташа понимали это), но только потому, что он полагал, что это все, что от него требовали; но когда ему сказали, чтобы он благословил его, он исполнил требуемое и оглянулся, как будто спрашивая, не нужно ли еще что нибудь сделать.
Когда происходили последние содрогания тела, оставляемого духом, княжна Марья и Наташа были тут.
– Кончилось?! – сказала княжна Марья, после того как тело его уже несколько минут неподвижно, холодея, лежало перед ними. Наташа подошла, взглянула в мертвые глаза и поспешила закрыть их. Она закрыла их и не поцеловала их, а приложилась к тому, что было ближайшим воспоминанием о нем.
«Куда он ушел? Где он теперь?..»

Когда одетое, обмытое тело лежало в гробу на столе, все подходили к нему прощаться, и все плакали.
Николушка плакал от страдальческого недоумения, разрывавшего его сердце. Графиня и Соня плакали от жалости к Наташе и о том, что его нет больше. Старый граф плакал о том, что скоро, он чувствовал, и ему предстояло сделать тот же страшный шаг.
Наташа и княжна Марья плакали тоже теперь, но они плакали не от своего личного горя; они плакали от благоговейного умиления, охватившего их души перед сознанием простого и торжественного таинства смерти, совершившегося перед ними.



Для человеческого ума недоступна совокупность причин явлений. Но потребность отыскивать причины вложена в душу человека. И человеческий ум, не вникнувши в бесчисленность и сложность условий явлений, из которых каждое отдельно может представляться причиною, хватается за первое, самое понятное сближение и говорит: вот причина. В исторических событиях (где предметом наблюдения суть действия людей) самым первобытным сближением представляется воля богов, потом воля тех людей, которые стоят на самом видном историческом месте, – исторических героев. Но стоит только вникнуть в сущность каждого исторического события, то есть в деятельность всей массы людей, участвовавших в событии, чтобы убедиться, что воля исторического героя не только не руководит действиями масс, но сама постоянно руководима. Казалось бы, все равно понимать значение исторического события так или иначе. Но между человеком, который говорит, что народы Запада пошли на Восток, потому что Наполеон захотел этого, и человеком, который говорит, что это совершилось, потому что должно было совершиться, существует то же различие, которое существовало между людьми, утверждавшими, что земля стоит твердо и планеты движутся вокруг нее, и теми, которые говорили, что они не знают, на чем держится земля, но знают, что есть законы, управляющие движением и ее, и других планет. Причин исторического события – нет и не может быть, кроме единственной причины всех причин. Но есть законы, управляющие событиями, отчасти неизвестные, отчасти нащупываемые нами. Открытие этих законов возможно только тогда, когда мы вполне отрешимся от отыскиванья причин в воле одного человека, точно так же, как открытие законов движения планет стало возможно только тогда, когда люди отрешились от представления утвержденности земли.

После Бородинского сражения, занятия неприятелем Москвы и сожжения ее, важнейшим эпизодом войны 1812 года историки признают движение русской армии с Рязанской на Калужскую дорогу и к Тарутинскому лагерю – так называемый фланговый марш за Красной Пахрой. Историки приписывают славу этого гениального подвига различным лицам и спорят о том, кому, собственно, она принадлежит. Даже иностранные, даже французские историки признают гениальность русских полководцев, говоря об этом фланговом марше. Но почему военные писатели, а за ними и все, полагают, что этот фланговый марш есть весьма глубокомысленное изобретение какого нибудь одного лица, спасшее Россию и погубившее Наполеона, – весьма трудно понять. Во первых, трудно понять, в чем состоит глубокомыслие и гениальность этого движения; ибо для того, чтобы догадаться, что самое лучшее положение армии (когда ее не атакуют) находиться там, где больше продовольствия, – не нужно большого умственного напряжения. И каждый, даже глупый тринадцатилетний мальчик, без труда мог догадаться, что в 1812 году самое выгодное положение армии, после отступления от Москвы, было на Калужской дороге. Итак, нельзя понять, во первых, какими умозаключениями доходят историки до того, чтобы видеть что то глубокомысленное в этом маневре. Во вторых, еще труднее понять, в чем именно историки видят спасительность этого маневра для русских и пагубность его для французов; ибо фланговый марш этот, при других, предшествующих, сопутствовавших и последовавших обстоятельствах, мог быть пагубным для русского и спасительным для французского войска. Если с того времени, как совершилось это движение, положение русского войска стало улучшаться, то из этого никак не следует, чтобы это движение было тому причиною.
Этот фланговый марш не только не мог бы принести какие нибудь выгоды, но мог бы погубить русскую армию, ежели бы при том не было совпадения других условий. Что бы было, если бы не сгорела Москва? Если бы Мюрат не потерял из виду русских? Если бы Наполеон не находился в бездействии? Если бы под Красной Пахрой русская армия, по совету Бенигсена и Барклая, дала бы сражение? Что бы было, если бы французы атаковали русских, когда они шли за Пахрой? Что бы было, если бы впоследствии Наполеон, подойдя к Тарутину, атаковал бы русских хотя бы с одной десятой долей той энергии, с которой он атаковал в Смоленске? Что бы было, если бы французы пошли на Петербург?.. При всех этих предположениях спасительность флангового марша могла перейти в пагубность.
В третьих, и самое непонятное, состоит в том, что люди, изучающие историю, умышленно не хотят видеть того, что фланговый марш нельзя приписывать никакому одному человеку, что никто никогда его не предвидел, что маневр этот, точно так же как и отступление в Филях, в настоящем никогда никому не представлялся в его цельности, а шаг за шагом, событие за событием, мгновение за мгновением вытекал из бесчисленного количества самых разнообразных условий, и только тогда представился во всей своей цельности, когда он совершился и стал прошедшим.
На совете в Филях у русского начальства преобладающею мыслью было само собой разумевшееся отступление по прямому направлению назад, то есть по Нижегородской дороге. Доказательствами тому служит то, что большинство голосов на совете было подано в этом смысле, и, главное, известный разговор после совета главнокомандующего с Ланским, заведовавшим провиантскою частью. Ланской донес главнокомандующему, что продовольствие для армии собрано преимущественно по Оке, в Тульской и Калужской губерниях и что в случае отступления на Нижний запасы провианта будут отделены от армии большою рекою Окой, через которую перевоз в первозимье бывает невозможен. Это был первый признак необходимости уклонения от прежде представлявшегося самым естественным прямого направления на Нижний. Армия подержалась южнее, по Рязанской дороге, и ближе к запасам. Впоследствии бездействие французов, потерявших даже из виду русскую армию, заботы о защите Тульского завода и, главное, выгоды приближения к своим запасам заставили армию отклониться еще южнее, на Тульскую дорогу. Перейдя отчаянным движением за Пахрой на Тульскую дорогу, военачальники русской армии думали оставаться у Подольска, и не было мысли о Тарутинской позиции; но бесчисленное количество обстоятельств и появление опять французских войск, прежде потерявших из виду русских, и проекты сражения, и, главное, обилие провианта в Калуге заставили нашу армию еще более отклониться к югу и перейти в середину путей своего продовольствия, с Тульской на Калужскую дорогу, к Тарутину. Точно так же, как нельзя отвечать на тот вопрос, когда оставлена была Москва, нельзя отвечать и на то, когда именно и кем решено было перейти к Тарутину. Только тогда, когда войска пришли уже к Тарутину вследствие бесчисленных дифференциальных сил, тогда только стали люди уверять себя, что они этого хотели и давно предвидели.


Знаменитый фланговый марш состоял только в том, что русское войско, отступая все прямо назад по обратному направлению наступления, после того как наступление французов прекратилось, отклонилось от принятого сначала прямого направления и, не видя за собой преследования, естественно подалось в ту сторону, куда его влекло обилие продовольствия.
Если бы представить себе не гениальных полководцев во главе русской армии, но просто одну армию без начальников, то и эта армия не могла бы сделать ничего другого, кроме обратного движения к Москве, описывая дугу с той стороны, с которой было больше продовольствия и край был обильнее.
Передвижение это с Нижегородской на Рязанскую, Тульскую и Калужскую дороги было до такой степени естественно, что в этом самом направлении отбегали мародеры русской армии и что в этом самом направлении требовалось из Петербурга, чтобы Кутузов перевел свою армию. В Тарутине Кутузов получил почти выговор от государя за то, что он отвел армию на Рязанскую дорогу, и ему указывалось то самое положение против Калуги, в котором он уже находился в то время, как получил письмо государя.
Откатывавшийся по направлению толчка, данного ему во время всей кампании и в Бородинском сражении, шар русского войска, при уничтожении силы толчка и не получая новых толчков, принял то положение, которое было ему естественно.
Заслуга Кутузова не состояла в каком нибудь гениальном, как это называют, стратегическом маневре, а в том, что он один понимал значение совершавшегося события. Он один понимал уже тогда значение бездействия французской армии, он один продолжал утверждать, что Бородинское сражение была победа; он один – тот, который, казалось бы, по своему положению главнокомандующего, должен был быть вызываем к наступлению, – он один все силы свои употреблял на то, чтобы удержать русскую армию от бесполезных сражений.
Подбитый зверь под Бородиным лежал там где то, где его оставил отбежавший охотник; но жив ли, силен ли он был, или он только притаился, охотник не знал этого. Вдруг послышался стон этого зверя.
Стон этого раненого зверя, французской армии, обличивший ее погибель, была присылка Лористона в лагерь Кутузова с просьбой о мире.
Наполеон с своей уверенностью в том, что не то хорошо, что хорошо, а то хорошо, что ему пришло в голову, написал Кутузову слова, первые пришедшие ему в голову и не имеющие никакого смысла. Он писал:

«Monsieur le prince Koutouzov, – писал он, – j'envoie pres de vous un de mes aides de camps generaux pour vous entretenir de plusieurs objets interessants. Je desire que Votre Altesse ajoute foi a ce qu'il lui dira, surtout lorsqu'il exprimera les sentiments d'estime et de particuliere consideration que j'ai depuis longtemps pour sa personne… Cette lettre n'etant a autre fin, je prie Dieu, Monsieur le prince Koutouzov, qu'il vous ait en sa sainte et digne garde,
Moscou, le 3 Octobre, 1812. Signe:
Napoleon».
[Князь Кутузов, посылаю к вам одного из моих генерал адъютантов для переговоров с вами о многих важных предметах. Прошу Вашу Светлость верить всему, что он вам скажет, особенно когда, станет выражать вам чувствования уважения и особенного почтения, питаемые мною к вам с давнего времени. Засим молю бога о сохранении вас под своим священным кровом.
Москва, 3 октября, 1812.
Наполеон. ]

«Je serais maudit par la posterite si l'on me regardait comme le premier moteur d'un accommodement quelconque. Tel est l'esprit actuel de ma nation», [Я бы был проклят, если бы на меня смотрели как на первого зачинщика какой бы то ни было сделки; такова воля нашего народа. ] – отвечал Кутузов и продолжал употреблять все свои силы на то, чтобы удерживать войска от наступления.
В месяц грабежа французского войска в Москве и спокойной стоянки русского войска под Тарутиным совершилось изменение в отношении силы обоих войск (духа и численности), вследствие которого преимущество силы оказалось на стороне русских. Несмотря на то, что положение французского войска и его численность были неизвестны русским, как скоро изменилось отношение, необходимость наступления тотчас же выразилась в бесчисленном количестве признаков. Признаками этими были: и присылка Лористона, и изобилие провианта в Тарутине, и сведения, приходившие со всех сторон о бездействии и беспорядке французов, и комплектование наших полков рекрутами, и хорошая погода, и продолжительный отдых русских солдат, и обыкновенно возникающее в войсках вследствие отдыха нетерпение исполнять то дело, для которого все собраны, и любопытство о том, что делалось во французской армии, так давно потерянной из виду, и смелость, с которою теперь шныряли русские аванпосты около стоявших в Тарутине французов, и известия о легких победах над французами мужиков и партизанов, и зависть, возбуждаемая этим, и чувство мести, лежавшее в душе каждого человека до тех пор, пока французы были в Москве, и (главное) неясное, но возникшее в душе каждого солдата сознание того, что отношение силы изменилось теперь и преимущество находится на нашей стороне. Существенное отношение сил изменилось, и наступление стало необходимым. И тотчас же, так же верно, как начинают бить и играть в часах куранты, когда стрелка совершила полный круг, в высших сферах, соответственно существенному изменению сил, отразилось усиленное движение, шипение и игра курантов.