Оператор Лапласа

Поделись знанием:
Перейти к: навигация, поиск

Опера́тор Лапла́са (лапласиа́н, оператор дельта) — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом <math>\ \Delta</math>. Функции <math>F\ </math> он ставит в соответствие функцию

<math>\left({\partial^2 \over \partial x_1^2} + {\partial^2 \over \partial x_2^2} + \ldots + {\partial^2 \over \partial x_n^2}\right)F</math>

в n-мерном пространстве.

Оператор Лапласа эквивалентен последовательному взятию операций градиента и дивергенции: <math>\Delta=\operatorname{div}\,\operatorname{grad}</math>, таким образом, значение оператора Лапласа в точке может быть истолковано как плотность источников (стоков) потенциального векторного поля <math>\ \operatorname{grad}F</math> в этой точке. В декартовой системе координат оператор Лапласа часто обозначается следующим образом <math>\Delta=\nabla\cdot\nabla=\nabla^2</math>[1], то есть в виде скалярного произведения оператора набла на себя. Оператор Лапласа симметричен.





Другое определение оператора Лапласа

Оператор Лапласа является естественным обобщением на функции нескольких переменных обычной второй производной функции одной переменной. В самом деле, если функция <math>\ f (x)</math> имеет в окрестности точки <math>\ x_0</math> непрерывную вторую производную <math>\ f(x)</math>, то, как это следует из формулы Тейлора

<math>\ f(x_0+r)=f(x_0)+rf'(x_0)+\frac{r^2}{2}f(x_0)+o(r^2),</math> при <math>r\to 0,</math>,
<math>\ f(x_0-r)=f(x_0)-rf'(x_0)+\frac{r^2}{2}f(x_0)+o(r^2),</math> при <math>r\to 0,</math>

вторая производная есть предел

<math>\ f(x_0)=\lim\limits_{r \to 0} \frac{2}{r^2} \left\{ \frac{f(x_0+r)+f(x_0-r)}{2}-f(x_0) \right\}.</math>

Если, переходя к функции <math>\ F</math> от <math>\ k</math> переменных, поступить таким же образом, то есть для заданной точки <math> M_0(x_1^0,x_2^0, ... ,x_k^0)</math> рассматривать её <math>\ k</math> -мерную шаровую окрестность <math>\ Q_r</math> радиуса <math>\ r</math> и разность между средним арифметическим

<math>\ \frac{1}{\sigma(S_r)}\int\limits_{S_r}Fd\sigma</math>

функции <math>\ F</math> на границе <math>\ S_r</math> такой окрестности с площадью границы <math>\ \sigma(S_r)</math> и значением <math>\ F(M_0)</math> в центре этой окрестности <math>\ M_0</math>, то в случае непрерывности вторых частных производных функции <math>\ F</math> в окрестности точки <math>\ M_0</math> значение лапласиана <math>\ \Delta F</math> в этой точке есть предел

<math>\ \Delta F(M_0)=\lim\limits_{r \to 0} \frac{2k}{r^2} \left\{\frac{1}{\sigma(S_r)}\int\limits_{S_r}F(M)d\sigma -F(M_0) \right\}.</math>

Одновременно с предыдущим представлением для оператора Лапласа функции <math>\ F</math>, имеющей непрерывные вторые производные, справедлива формула

<math>\ \Delta F(M_0)=\lim\limits_{r \to 0} \frac{2(k+2)}{r^2} \left\{\frac{1}{\omega(Q_r)}\int\limits_{Q_r}F(M)d\omega -F(M_0) \right\},</math> где <math>\ \omega(Q_r)</math> — объём окрестности <math>\ Q_r.</math>

Эта формула выражает непосредственную связь лапласиана функции с её объёмным средним в окрестности данной точки.

Доказательство этих формул можно найти, например, в[2].

Вышеизложенные пределы, во всех случаях, когда они существуют, могут служить определением оператора Лапласа функции <math>\ F.</math> Такое определение предпочтительнее обычного определения лапласиана, предполагающего существование вторых производных рассматриваемых функций, и совпадает с обычным определением в случае непрерывности этих производных.

Выражения для оператора Лапласа в различных криволинейных системах координат

В произвольных ортогональных криволинейных координатах в трёхмерном пространстве <math>q_1,\ q_2,\ q_3</math>:

<math>\Delta f (q_1,\ q_2,\ q_3) = \operatorname{div}\,\operatorname{grad}\,f(q_1,\ q_2,\ q_3) = </math>
<math>=\frac{1}{H_1H_2H_3}\left[ \frac{\partial}{\partial q_1}\left( \frac{H_2H_3}{H_1}\frac{\partial f}{\partial q_1} \right) + \frac{\partial}{\partial q_2}\left( \frac{H_1H_3}{H_2}\frac{\partial f}{\partial q_2} \right) + \frac{\partial}{\partial q_3}\left( \frac{H_1H_2}{H_3}\frac{\partial f}{\partial q_3} \right)\right],</math>
где <math>H_i\ </math> — коэффициенты Ламе.

Цилиндрические координаты

В цилиндрических координатах вне прямой <math>\ r=0</math>:

<math> \Delta f

= {1 \over r} {\partial \over \partial r}

 \left( r {\partial f \over \partial r} \right) 

+ {\partial^2f \over \partial z^2} + {1 \over r^2} {\partial^2 f \over \partial \varphi^2} </math>

Сферические координаты

В сферических координатах вне начала отсчёта (в трёхмерном пространстве):

<math> \Delta f

= {1 \over r^2} {\partial \over \partial r}

 \left( r^2 {\partial f \over \partial r} \right) 

+ {1 \over r^2 \sin \theta} {\partial \over \partial \theta}

 \left( \sin \theta {\partial f \over \partial \theta} \right) 

+ {1 \over r^2\sin^2 \theta} {\partial^2 f \over \partial \varphi^2} </math>

или

<math> \Delta f

= {1 \over r} {\partial^2 \over \partial r^2}

 \left( rf \right) 

+ {1 \over r^2 \sin \theta} {\partial \over \partial \theta}

 \left( \sin \theta {\partial f \over \partial \theta} \right) 

+ {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \varphi^2}. </math>

В случае если <math>\ f=f(r)</math> в n-мерном пространстве:

<math> \Delta f = {d^2 f\over dr^2} + {n-1 \over r } {df\over dr}.</math>

Параболические координаты

В параболических координатах (в трёхмерном пространстве) вне начала отсчёта:

<math>

\Delta f= \frac{1}{\sigma^{2} + \tau^{2}} \left[ \frac{1}{\sigma} \frac{\partial }{\partial \sigma} \left( \sigma \frac{\partial f}{\partial \sigma} \right) + \frac{1}{\tau} \frac{\partial }{\partial \tau} \left( \tau \frac{\partial f}{\partial \tau} \right)\right] + \frac{1}{\sigma^2\tau^2}\frac{\partial^2 f}{\partial \varphi^2} </math>

Цилиндрические параболические координаты

В координатах параболического цилиндра вне начала отсчёта:

<math>\Delta F(u,v,z) = \frac{1}{c^2(u^2+v^2)} \left[ \frac{\partial^2 F }{\partial u^2}+ \frac{\partial^2 F }{\partial v^2}\right] + \frac{\partial^2 F }{\partial z^2}.</math>

Общие криволинейные координаты и римановы пространства

Пусть на гладком многообразии <math>X</math> задана локальная система координат и <math>g_{ij}</math> — риманов метрический тензор на <math>X</math>, то есть метрика имеет вид

<math>ds^2 =\sum^n_{i,j=1}g_{ij} dx^idx^j</math> .

Обозначим через <math>g^{ij}</math> элементы матрицы <math>(g_{ij})^{-1}</math> и

<math>g = \operatorname{det} g_{ij} = (\operatorname{det} g^{ij})^{-1}</math>.

Дивергенция векторного поля <math>F</math>, заданного координатами <math>F^i</math> (и представляющего дифференциальный оператор первого порядка <math>\sum_i F^i\frac{\partial}{\partial x^i}</math>) на многообразии X вычисляется по формуле

<math>\operatorname{div} F = \frac{1}{\sqrt{g}}\sum^n_{i=1}\frac{\partial}{\partial x^i}(\sqrt{g}F^i)</math>,

а компоненты градиента функции f — по формуле

<math>(\nabla f)^j =\sum^n_{i=1}g^{ij} \frac{\partial f}{\partial x^i}.</math>

Оператор Лапласа — Бельтрами на <math>X</math>:

<math>\Delta f = \operatorname{div} (\nabla f)= \frac{1}{\sqrt{g}}\sum^n_{i=1}\frac{\partial}{\partial x^i}\Big(\sqrt{g} \sum^n_{k=1}g^{ik} \frac{\partial f}{\partial x^k}\Big).</math>

Значение <math>\Delta f</math> является скаляром, то есть не изменяется при преобразовании координат.

Применение

С помощью данного оператора удобно записывать уравнения Лапласа, Пуассона и волновое уравнение. В физике оператор Лапласа применим в электростатике и электродинамике, квантовой механике, во многих уравнениях физики сплошных сред, а также при изучении равновесия мембран, плёнок или поверхностей раздела фаз с поверхностным натяжением (см. Лапласово давление), в стационарных задачах диффузии и теплопроводности, которые сводятся, в непрерывном пределе, к обычным уравнениям Лапласа или Пуассона или к некоторым их обобщениям.

Вариации и обобщения

См. также

Напишите отзыв о статье "Оператор Лапласа"

Литература

  1. Стоит избегать обозначения для оператора Лапласа в виде квадрата оператора набла, поскольку из такой записи непонятно, скалярное или векторное произведение подразумевается под возведением в квадрат.
  2. Тиман А. Ф., Трофимов В. Н. Введение в теорию гармонических функций. М. Наука. 1968 г. 208с.

Ссылки

  • [mathworld.wolfram.com/Laplacian.html MathWorld description of Laplacian]

Отрывок, характеризующий Оператор Лапласа


Княжна Марья, сидя в гостиной и слушая эти толки и пересуды стариков, ничего не понимала из того, что она слышала; она думала только о том, не замечают ли все гости враждебных отношений ее отца к ней. Она даже не заметила особенного внимания и любезностей, которые ей во всё время этого обеда оказывал Друбецкой, уже третий раз бывший в их доме.
Княжна Марья с рассеянным, вопросительным взглядом обратилась к Пьеру, который последний из гостей, с шляпой в руке и с улыбкой на лице, подошел к ней после того, как князь вышел, и они одни оставались в гостиной.
– Можно еще посидеть? – сказал он, своим толстым телом валясь в кресло подле княжны Марьи.
– Ах да, – сказала она. «Вы ничего не заметили?» сказал ее взгляд.
Пьер находился в приятном, после обеденном состоянии духа. Он глядел перед собою и тихо улыбался.
– Давно вы знаете этого молодого человека, княжна? – сказал он.
– Какого?
– Друбецкого?
– Нет, недавно…
– Что он вам нравится?
– Да, он приятный молодой человек… Отчего вы меня это спрашиваете? – сказала княжна Марья, продолжая думать о своем утреннем разговоре с отцом.
– Оттого, что я сделал наблюдение, – молодой человек обыкновенно из Петербурга приезжает в Москву в отпуск только с целью жениться на богатой невесте.
– Вы сделали это наблюденье! – сказала княжна Марья.
– Да, – продолжал Пьер с улыбкой, – и этот молодой человек теперь себя так держит, что, где есть богатые невесты, – там и он. Я как по книге читаю в нем. Он теперь в нерешительности, кого ему атаковать: вас или mademoiselle Жюли Карагин. Il est tres assidu aupres d'elle. [Он очень к ней внимателен.]
– Он ездит к ним?
– Да, очень часто. И знаете вы новую манеру ухаживать? – с веселой улыбкой сказал Пьер, видимо находясь в том веселом духе добродушной насмешки, за который он так часто в дневнике упрекал себя.
– Нет, – сказала княжна Марья.
– Теперь чтобы понравиться московским девицам – il faut etre melancolique. Et il est tres melancolique aupres de m lle Карагин, [надо быть меланхоличным. И он очень меланхоличен с m elle Карагин,] – сказал Пьер.
– Vraiment? [Право?] – сказала княжна Марья, глядя в доброе лицо Пьера и не переставая думать о своем горе. – «Мне бы легче было, думала она, ежели бы я решилась поверить кому нибудь всё, что я чувствую. И я бы желала именно Пьеру сказать всё. Он так добр и благороден. Мне бы легче стало. Он мне подал бы совет!»
– Пошли бы вы за него замуж? – спросил Пьер.
– Ах, Боже мой, граф, есть такие минуты, что я пошла бы за всякого, – вдруг неожиданно для самой себя, со слезами в голосе, сказала княжна Марья. – Ах, как тяжело бывает любить человека близкого и чувствовать, что… ничего (продолжала она дрожащим голосом), не можешь для него сделать кроме горя, когда знаешь, что не можешь этого переменить. Тогда одно – уйти, а куда мне уйти?…
– Что вы, что с вами, княжна?
Но княжна, не договорив, заплакала.
– Я не знаю, что со мной нынче. Не слушайте меня, забудьте, что я вам сказала.
Вся веселость Пьера исчезла. Он озабоченно расспрашивал княжну, просил ее высказать всё, поверить ему свое горе; но она только повторила, что просит его забыть то, что она сказала, что она не помнит, что она сказала, и что у нее нет горя, кроме того, которое он знает – горя о том, что женитьба князя Андрея угрожает поссорить отца с сыном.
– Слышали ли вы про Ростовых? – спросила она, чтобы переменить разговор. – Мне говорили, что они скоро будут. Andre я тоже жду каждый день. Я бы желала, чтоб они увиделись здесь.
– А как он смотрит теперь на это дело? – спросил Пьер, под он разумея старого князя. Княжна Марья покачала головой.
– Но что же делать? До года остается только несколько месяцев. И это не может быть. Я бы только желала избавить брата от первых минут. Я желала бы, чтобы они скорее приехали. Я надеюсь сойтись с нею. Вы их давно знаете, – сказала княжна Марья, – скажите мне, положа руку на сердце, всю истинную правду, что это за девушка и как вы находите ее? Но всю правду; потому что, вы понимаете, Андрей так много рискует, делая это против воли отца, что я бы желала знать…
Неясный инстинкт сказал Пьеру, что в этих оговорках и повторяемых просьбах сказать всю правду, выражалось недоброжелательство княжны Марьи к своей будущей невестке, что ей хотелось, чтобы Пьер не одобрил выбора князя Андрея; но Пьер сказал то, что он скорее чувствовал, чем думал.
– Я не знаю, как отвечать на ваш вопрос, – сказал он, покраснев, сам не зная от чего. – Я решительно не знаю, что это за девушка; я никак не могу анализировать ее. Она обворожительна. А отчего, я не знаю: вот всё, что можно про нее сказать. – Княжна Марья вздохнула и выражение ее лица сказало: «Да, я этого ожидала и боялась».
– Умна она? – спросила княжна Марья. Пьер задумался.
– Я думаю нет, – сказал он, – а впрочем да. Она не удостоивает быть умной… Да нет, она обворожительна, и больше ничего. – Княжна Марья опять неодобрительно покачала головой.
– Ах, я так желаю любить ее! Вы ей это скажите, ежели увидите ее прежде меня.
– Я слышал, что они на днях будут, – сказал Пьер.
Княжна Марья сообщила Пьеру свой план о том, как она, только что приедут Ростовы, сблизится с будущей невесткой и постарается приучить к ней старого князя.


Женитьба на богатой невесте в Петербурге не удалась Борису и он с этой же целью приехал в Москву. В Москве Борис находился в нерешительности между двумя самыми богатыми невестами – Жюли и княжной Марьей. Хотя княжна Марья, несмотря на свою некрасивость, и казалась ему привлекательнее Жюли, ему почему то неловко было ухаживать за Болконской. В последнее свое свиданье с ней, в именины старого князя, на все его попытки заговорить с ней о чувствах, она отвечала ему невпопад и очевидно не слушала его.
Жюли, напротив, хотя и особенным, одной ей свойственным способом, но охотно принимала его ухаживанье.
Жюли было 27 лет. После смерти своих братьев, она стала очень богата. Она была теперь совершенно некрасива; но думала, что она не только так же хороша, но еще гораздо больше привлекательна, чем была прежде. В этом заблуждении поддерживало ее то, что во первых она стала очень богатой невестой, а во вторых то, что чем старее она становилась, тем она была безопаснее для мужчин, тем свободнее было мужчинам обращаться с нею и, не принимая на себя никаких обязательств, пользоваться ее ужинами, вечерами и оживленным обществом, собиравшимся у нее. Мужчина, который десять лет назад побоялся бы ездить каждый день в дом, где была 17 ти летняя барышня, чтобы не компрометировать ее и не связать себя, теперь ездил к ней смело каждый день и обращался с ней не как с барышней невестой, а как с знакомой, не имеющей пола.
Дом Карагиных был в эту зиму в Москве самым приятным и гостеприимным домом. Кроме званых вечеров и обедов, каждый день у Карагиных собиралось большое общество, в особенности мужчин, ужинающих в 12 м часу ночи и засиживающихся до 3 го часу. Не было бала, гулянья, театра, который бы пропускала Жюли. Туалеты ее были всегда самые модные. Но, несмотря на это, Жюли казалась разочарована во всем, говорила всякому, что она не верит ни в дружбу, ни в любовь, ни в какие радости жизни, и ожидает успокоения только там . Она усвоила себе тон девушки, понесшей великое разочарованье, девушки, как будто потерявшей любимого человека или жестоко обманутой им. Хотя ничего подобного с ней не случилось, на нее смотрели, как на такую, и сама она даже верила, что она много пострадала в жизни. Эта меланхолия, не мешавшая ей веселиться, не мешала бывавшим у нее молодым людям приятно проводить время. Каждый гость, приезжая к ним, отдавал свой долг меланхолическому настроению хозяйки и потом занимался и светскими разговорами, и танцами, и умственными играми, и турнирами буриме, которые были в моде у Карагиных. Только некоторые молодые люди, в числе которых был и Борис, более углублялись в меланхолическое настроение Жюли, и с этими молодыми людьми она имела более продолжительные и уединенные разговоры о тщете всего мирского, и им открывала свои альбомы, исписанные грустными изображениями, изречениями и стихами.