Функция делителей

Поделись знанием:
(перенаправлено с «Сумма делителей»)
Перейти к: навигация, поиск

Функция делителей — арифметическая функция, связанная с делителями целого числа. Функция известна также под именем функция дивизоров. Применяется, в частности, при исследовании связи дзета-функции Римана и рядов Эйзенштейна для модулярных форм. Изучалась Рамануджаном, который вывел ряд важных равенств в модульной арифметике и арифметических тождеств.

С этой функцией тесно связана суммирующая функция делителей, которая, как следует из названия, является суммой функции делителей.





Определение

Функция сумма положительных делителей σx(n) для вещественного или комплексного числа x определяется как сумма xстепеней положительных делителей числа n. Функцию можно выразить формулой

<math>\sigma_{x}(n)=\sum_{d|n} d^x\,\! ,</math>

где <math>{d|n}</math> означает «d делит n». Обозначения d(n), ν(n) и τ(n) (от немецкого Teiler = делитель) используются также для обозначения σ0(n), или функции числа делителей [1][2]. Если x равен 1, функция называется сигма-функцией или суммой делителей, [3] и индекс часто опускается, так что σ(n) эквивалентна σ1(n)[4].

Аликвотная сумма s(n) для n — это сумма собственных делителей (то есть делители, за исключением самого n[5], и равна σ1(n) − n. Аликвотная последовательность для n образуется последовательным вычислением аликвотной суммы, то есть каждое последующее значение в последовательности равно аликвотной сумме предыдущего значения.

Примеры

Например, σ0(12) — количество делителей числа 12:

<math>

\begin{align} \sigma_{0}(12) & = 1^0 + 2^0 + 3^0 + 4^0 + 6^0 + 12^0 \\ & = 1 + 1 + 1 + 1 + 1 + 1 = 6, \end{align} </math>

в то время как σ1(12) — сумма всех делителей:

<math>

\begin{align} \sigma_{1}(12) & = 1^1 + 2^1 + 3^1 + 4^1 + 6^1 + 12^1 \\ & = 1 + 2 + 3 + 4 + 6 + 12 = 28, \end{align} </math>

и аликвотная сумма s(12) собственных делителей равна:

<math>

\begin{align} s(12) & = 1^1 + 2^1 + 3^1 + 4^1 + 6^1 \\ & = 1 + 2 + 3 + 4 + 6 = 16. \end{align} </math>

Таблица значений

n Делители σ0(n) σ1(n) s(n) = σ1(n) − n Комментарии
1 1 1 1 0 квадрат: значение σ0(n) нечетно; степень 2: s(n) = n − 1 (почти совершенное)
2 1,2 2 3 1 простое: σ1(n) = 1+n, так что s(n) =1
3 1,3 2 4 1 простое: σ1(n) = 1+n, так что s(n) =1
4 1,2,4 3 7 3 квадрат: σ0(n) нечетно; степень 2: s(n) = n − 1 (почти совершенное)
5 1,5 2 6 1 простое: σ1(n) = 1+n, так что s(n) =1
6 1,2,3,6 4 12 6 первое совершенное число: s(n) = n
7 1,7 2 8 1 простое: σ1(n) = 1+n, так что s(n) =1
8 1,2,4,8 4 15 7 степень 2: s(n) = n − 1 (почти совершенное)
9 1,3,9 3 13 4 квадрат: σ0(n) нечетно
10 1,2,5,10 4 18 8
11 1,11 2 12 1 простое: σ1(n) = 1+n, так что s(n) =1
12 1,2,3,4,6,12 6 28 16 первое избыточное число: s(n) > n
13 1,13 2 14 1 простое: σ1(n) = 1+n, так что s(n) =1
14 1,2,7,14 4 24 10
15 1,3,5,15 4 24 9
16 1,2,4,8,16 5 31 15 квадрат: σ0(n) нечетно; степень 2: s(n) = n − 1 (почти совершенное)

Случаи <math>x = 2</math>, <math>x = 3</math> и так далее входят в последовательности A001157, A001158, A001159, A001160, A013954, A013955

Свойства

Для целых, не являющихся квадратами, каждый делитель d числа n имеет парный делитель n/d, а значит, <math>\sigma_{0}(n)</math> всегда четно для таких чисел. Для квадратов один делитель, а именно <math>\sqrt n</math>, не имеет пары, так что для них <math>\sigma_{0}(n)</math> всегда нечетно.

Для простого числа p,

<math>

\begin{align} \sigma_0(p) & = 2 \\ \sigma_0(p^n) & = n+1 \\ \sigma_1(p) & = p+1 \end{align} </math>

поскольку, по определению, простое число делится только на единицу и самого себя. Если pn# означает праймориал, то

<math> \sigma_0(p_n\#) = 2^n</math>


Ясно, что <math>1 < \sigma_0(n) < n</math> и <math>\sigma(n) > n</math> для всех <math>n > 2</math>.

Функция делителей мультипликативна, но не вполне мультипликативна.

Если мы запишем

<math>n = \prod_{i=1}^r p_i^{a_i}</math>,

где r = ω(n) — число простых делителей числа n, pi — i-й простой делитель, а ai — максимальная степень pi, на которую делится n, то

<math>\sigma_x(n) = \prod_{i=1}^{r} \frac{p_{i}^{(a_{i}+1)x}-1}{p_{i}^x-1}</math>,

что эквивалентно:

<math>

\sigma_x(n) = \prod_{i=1}^r \sum_{j=0}^{a_i} p_i^{j x} = \prod_{i=1}^r (1 + p_i^x + p_i^{2x} + \cdots + p_i^{a_i x}). </math>

Если положить x = 0, получим, что d(n) равно:

<math>\sigma_0(n)=\prod_{i=1}^r (a_i+1).</math>

Например, число n = 24 имеет два простых множителя — p1 = 2 и p2 = 3. Поскольку 24 — это произведение 23×31, то a1 = 3 и a2 = 1.

Теперь мы можем вычислить <math>\sigma_0(24)</math>:

<math>

\begin{align} \sigma_0(24) & = \prod_{i=1}^{2} (a_i+1) \\ & = (3 + 1)(1 + 1) = 4 \times 2 = 8. \end{align} </math>

Восемь делителей числа 24 — это 1, 2, 4, 8, 3, 6, 12, и 24.

Заметим также, что s(n) = σ(n) − n. Здесь s(n) обозначает сумму собственных делителей числа n, то есть делителей, за исключением самого числа n. Эта функция используется для определения совершенности числа — для них s(n) = n. Если s(n) > n, n называется избыточным, а если s(n) < n, n называется недостаточным.

Если n — степень двойки, то есть <math>n = 2^k</math>, то <math>\sigma(n) = 2 \times 2^k - 1 = 2n - 1,</math> and s(n) = n — 1, что делает n почти совершенным.

Как пример, для двух простых p и q (где p < q), пусть

<math>n = pq.</math>

Тогда

<math>\sigma(n) = (p+1)(q+1) = n + 1 + (p+q),</math>
<math>\phi(n) = (p-1)(q-1) = n + 1 - (p+q),</math>

и

<math>n + 1 = (\sigma(n) + \phi(n))/2,</math>
<math>p + q = (\sigma(n) - \phi(n))/2,</math>

где φ(n) — это функция Эйлера.

Тогда корни p и q уравнения:

<math>(x-p)(x-q) = x^2 - (p+q)x + n = x^2 - [(\sigma(n) - \phi(n))/2]x + [(\sigma(n) + \phi(n))/2 - 1] = 0</math>

можно выразить через σ(n) и φ(n) :

<math>p = (\sigma(n) - \phi(n))/4 - \sqrt{[(\sigma(n) - \phi(n))/4]^2 - [(\sigma(n) + \phi(n))/2 - 1]},</math>
<math>q = (\sigma(n) - \phi(n))/4 + \sqrt{[(\sigma(n) - \phi(n))/4]^2 - [(\sigma(n) + \phi(n))/2 - 1]}.</math>

Зная n и либо σ(n), либо φ(n) (или зная p+q и либо σ(n), либо φ(n)) мы легко можем найти p и q.

В 1984 году Хиз-Браун (Roger Heath-Brown) доказал, что

<math>\sigma_0(n) = \sigma_0(n + 1)</math>

встречается бесконечно много раз.

Связь с рядами

Два ряда Дирихле, использующие функцию делителей:

<math>\sum_{n=1}^\infty \frac{\sigma_{a}(n)}{n^s} = \zeta(s) \zeta(s-a),</math>

и при обозначении d(n) = σ0(n) получим

<math>\sum_{n=1}^\infty \frac{d(n)}{n^s} = \zeta^2(s),</math>

и второй ряд,

<math>\sum_{n=1}^\infty \frac{\sigma_a(n)\sigma_b(n)}{n^s} = \frac{\zeta(s) \zeta(s-a) \zeta(s-b) \zeta(s-a-b)}{\zeta(2s-a-b)}.</math>

Ряд Ламбера, использующий функцию делителей:

<math>\sum_{n=1}^\infty q^n \sigma_a(n) = \sum_{n=1}^\infty \frac{n^a q^n}{1-q^n}</math>

для любого комплексного |q| ≤ 1 и a.

Эта сумма появляется также в рядах Фурье для рядов Эйзенштейна и в инвариантах эллиптических функций Вейерштрасса.

Асимптотическая скорость роста

В терминах о-малое, функция делителей удовлетворяет неравенству (см. стр. 296 книги Апостола[6])

для всех <math>\epsilon>0,\quad d(n)=o(n^\epsilon).</math>

Северин Вигерт дал более точную оценку

<math>\limsup_{n\to\infty}\frac{\log d(n)}{\log n/\log\log n}=\log2.</math>

С другой стороны, ввиду бесконечности числа простых чисел,

<math>\liminf_{n\to\infty} d(n)=2.</math>

В терминах О-большое, Дирихле показал, что средний порядок функции делителей удовлетворяет следующему неравенству (см. теорему 3.3 книги Апостола/>)

для всех <math>x\geq1, \sum_{n\leq x}d(n)=x\log x+(2\gamma-1)x+O(\sqrt{x}),</math>

где <math>\gamma</math> — постоянная Эйлера — Маскерони.

Задача улучшить границу <math>O(\sqrt{x})</math> в этой формуле — это проблема Дирихле о делителях

Поведение сигма функции неравномерно. Асимптотическую скорость роста сигма функции можно выразить формулой:

<math>

\limsup_{n\rightarrow\infty}\frac{\sigma(n)}{n\,\log \log n}=e^\gamma, </math>

где lim sup — верхний предел. Этот результат является теоремой Грёнвалла (Grönwall), опубликованной в 1913 году[7] Его доказательство использует третью теорему Мертенса, которая утверждает, что

<math>\lim_{n\to\infty}\frac{1}{\log n}\prod_{p\le n}\frac{p}{p-1}=e^{\gamma},</math>

где p — простое.

В 1915 году Рамануджан доказал, что при выполнении гипотезы Римана неравенство

<math>\ \sigma(n) < e^\gamma n \log \log n </math> (неравенство Робина)

выполняется для всех достаточно больших n[8]. В 1984 году Гай Робин доказал, что неравенство верно для всех n ≥ 5041 в том и только в том случае, если гипотеза Римана верна[9]. Это теорема Робина и неравенство стало широко известно после доказательства теоремы. Наибольшее известное число, нарушающее неравенство — это n=5040. Если гипотеза Римана верна, то нет чисел, больших этого и нарушающих неравенство. Робин показал, что в случае ошибочности гипотезы существует бесконечно много чисел n, нарушающих неравенство, и известно, что наименьшее из таких чисел n ≥ 5041 должно быть сверхизбыточным числом[10]. Было показано, что неравенство выполняется для больших нечетных свободных от квадратов чисел, и что гипотеза Римана эквивалентна выполнению неравенства для всех чисел n, делящихся на пятую степень простого числа[11]

Джефри Лагариас (Jeffrey Lagarias) в 2002 году доказал, что гипотеза Римана эквивалентна утверждению

<math> \sigma(n) \le H_n + \ln(H_n)e^{H_n}</math>

для любого натурального n, где <math>H_n</math> — nгармоническое число[12]

Робин доказал, что неравенство

<math>\ \sigma(n) < e^\gamma n \log \log n + \frac{0.6483\ n}{\log \log n}</math>

выполняется для n ≥ 3 без каких-либо дополнительных условий.

Напишите отзыв о статье "Функция делителей"

Примечания

  1. Long, Calvin T. (1972), Elementary Introduction to Number Theory (2nd ed.), Lexington: D. C. Heath and Company, LCCN 77-171950 стр 46
  2. последовательность A000005 в OEIS
  3. Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), Elements of Number Theory, Englewood Cliffs: Prentice Hall, LCCN 77-81766 , стр 58
  4. последовательность A000203 в OEIS
  5. последовательность A001065 в OEIS
  6. "Apostol Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001
  7. Grönwall, Thomas Hakon (1913), «Some asymptotic expressions in the theory of numbers», Transactions of the American Mathematical Society 14: 113—122, doi:10.1090/S0002-9947-1913-1500940-6
  8. Ramanujan, Srinivasa (1997), «Highly composite numbers, annotated by Jean-Louis Nicolas and Guy Robin», The Ramanujan Journal 1 (2): 119—153, doi:10.1023/A:1009764017495, ISSN 1382-4090, MR 1606180
  9. Robin, Guy (1984), «Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann», Journal de Mathématiques Pures et Appliquées, Neuvième Série 63 (2): 187—213, ISSN 0021-7824, MR 774171
  10. Akbary, Amir; Friggstad, Zachary (2009), «Superabundant numbers and the Riemann hypothesis», American Mathematical Monthly 116 (3): 273—275, doi:10.4169/193009709X470128
  11. YoungJu Choie, Nicolas Lichiardopol Pieter Moree Patrick Solé On Robin’s criterion for the Riemann hypothesis 2007 Journal de théorie des nombres de Bordeaux, ISSN=1246-7405, v19, issue 2, pages=357-372
  12. Lagarias, Jeffrey C. (2002), «An elementary problem equivalent to the Riemann hypothesis», The American Mathematical Monthly 109 (6): 534—543, doi:10.2307/2695443, ISSN 0002-9890, JSTOR 2695443, MR 19080

Ссылки

  • Bach, Eric; Shallit, Jeffrey, Algorithmic Number Theory, volume 1, 1996, MIT Press. ISBN 0-262-02405-5, see page 234 in section 8.8.
  • Weisstein, Eric W. [mathworld.wolfram.com/RobinsTheorem.html Robin's Theorem] (англ.) на сайте Wolfram MathWorld.
  • [mathstat.carleton.ca/~williams/papers/pdf/249.pdf Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions] PDF, авторы — Huard, Ou, Spearman, и Williams. Содержит элементарное (то есть не опирающееся на теорию модулярных форм) доказательство свертки суммы делителей, формулы для представления различными способами чисел как суммы треугольных чисел.

Отрывок, характеризующий Функция делителей



Вернувшись в Москву из армии, Николай Ростов был принят домашними как лучший сын, герой и ненаглядный Николушка; родными – как милый, приятный и почтительный молодой человек; знакомыми – как красивый гусарский поручик, ловкий танцор и один из лучших женихов Москвы.
Знакомство у Ростовых была вся Москва; денег в нынешний год у старого графа было достаточно, потому что были перезаложены все имения, и потому Николушка, заведя своего собственного рысака и самые модные рейтузы, особенные, каких ни у кого еще в Москве не было, и сапоги, самые модные, с самыми острыми носками и маленькими серебряными шпорами, проводил время очень весело. Ростов, вернувшись домой, испытал приятное чувство после некоторого промежутка времени примеривания себя к старым условиям жизни. Ему казалось, что он очень возмужал и вырос. Отчаяние за невыдержанный из закона Божьего экзамен, занимание денег у Гаврилы на извозчика, тайные поцелуи с Соней, он про всё это вспоминал, как про ребячество, от которого он неизмеримо был далек теперь. Теперь он – гусарский поручик в серебряном ментике, с солдатским Георгием, готовит своего рысака на бег, вместе с известными охотниками, пожилыми, почтенными. У него знакомая дама на бульваре, к которой он ездит вечером. Он дирижировал мазурку на бале у Архаровых, разговаривал о войне с фельдмаршалом Каменским, бывал в английском клубе, и был на ты с одним сорокалетним полковником, с которым познакомил его Денисов.
Страсть его к государю несколько ослабела в Москве, так как он за это время не видал его. Но он часто рассказывал о государе, о своей любви к нему, давая чувствовать, что он еще не всё рассказывает, что что то еще есть в его чувстве к государю, что не может быть всем понятно; и от всей души разделял общее в то время в Москве чувство обожания к императору Александру Павловичу, которому в Москве в то время было дано наименование ангела во плоти.
В это короткое пребывание Ростова в Москве, до отъезда в армию, он не сблизился, а напротив разошелся с Соней. Она была очень хороша, мила, и, очевидно, страстно влюблена в него; но он был в той поре молодости, когда кажется так много дела, что некогда этим заниматься, и молодой человек боится связываться – дорожит своей свободой, которая ему нужна на многое другое. Когда он думал о Соне в это новое пребывание в Москве, он говорил себе: Э! еще много, много таких будет и есть там, где то, мне еще неизвестных. Еще успею, когда захочу, заняться и любовью, а теперь некогда. Кроме того, ему казалось что то унизительное для своего мужества в женском обществе. Он ездил на балы и в женское общество, притворяясь, что делал это против воли. Бега, английский клуб, кутеж с Денисовым, поездка туда – это было другое дело: это было прилично молодцу гусару.
В начале марта, старый граф Илья Андреич Ростов был озабочен устройством обеда в английском клубе для приема князя Багратиона.
Граф в халате ходил по зале, отдавая приказания клубному эконому и знаменитому Феоктисту, старшему повару английского клуба, о спарже, свежих огурцах, землянике, теленке и рыбе для обеда князя Багратиона. Граф, со дня основания клуба, был его членом и старшиною. Ему было поручено от клуба устройство торжества для Багратиона, потому что редко кто умел так на широкую руку, хлебосольно устроить пир, особенно потому, что редко кто умел и хотел приложить свои деньги, если они понадобятся на устройство пира. Повар и эконом клуба с веселыми лицами слушали приказания графа, потому что они знали, что ни при ком, как при нем, нельзя было лучше поживиться на обеде, который стоил несколько тысяч.
– Так смотри же, гребешков, гребешков в тортю положи, знаешь! – Холодных стало быть три?… – спрашивал повар. Граф задумался. – Нельзя меньше, три… майонез раз, – сказал он, загибая палец…
– Так прикажете стерлядей больших взять? – спросил эконом. – Что ж делать, возьми, коли не уступают. Да, батюшка ты мой, я было и забыл. Ведь надо еще другую антре на стол. Ах, отцы мои! – Он схватился за голову. – Да кто же мне цветы привезет?
– Митинька! А Митинька! Скачи ты, Митинька, в подмосковную, – обратился он к вошедшему на его зов управляющему, – скачи ты в подмосковную и вели ты сейчас нарядить барщину Максимке садовнику. Скажи, чтобы все оранжереи сюда волок, укутывал бы войлоками. Да чтобы мне двести горшков тут к пятнице были.
Отдав еще и еще разные приказания, он вышел было отдохнуть к графинюшке, но вспомнил еще нужное, вернулся сам, вернул повара и эконома и опять стал приказывать. В дверях послышалась легкая, мужская походка, бряцанье шпор, и красивый, румяный, с чернеющимися усиками, видимо отдохнувший и выхолившийся на спокойном житье в Москве, вошел молодой граф.
– Ах, братец мой! Голова кругом идет, – сказал старик, как бы стыдясь, улыбаясь перед сыном. – Хоть вот ты бы помог! Надо ведь еще песенников. Музыка у меня есть, да цыган что ли позвать? Ваша братия военные это любят.
– Право, папенька, я думаю, князь Багратион, когда готовился к Шенграбенскому сражению, меньше хлопотал, чем вы теперь, – сказал сын, улыбаясь.
Старый граф притворился рассерженным. – Да, ты толкуй, ты попробуй!
И граф обратился к повару, который с умным и почтенным лицом, наблюдательно и ласково поглядывал на отца и сына.
– Какова молодежь то, а, Феоктист? – сказал он, – смеется над нашим братом стариками.
– Что ж, ваше сиятельство, им бы только покушать хорошо, а как всё собрать да сервировать , это не их дело.
– Так, так, – закричал граф, и весело схватив сына за обе руки, закричал: – Так вот же что, попался ты мне! Возьми ты сейчас сани парные и ступай ты к Безухову, и скажи, что граф, мол, Илья Андреич прислали просить у вас земляники и ананасов свежих. Больше ни у кого не достанешь. Самого то нет, так ты зайди, княжнам скажи, и оттуда, вот что, поезжай ты на Разгуляй – Ипатка кучер знает – найди ты там Ильюшку цыгана, вот что у графа Орлова тогда плясал, помнишь, в белом казакине, и притащи ты его сюда, ко мне.
– И с цыганками его сюда привести? – спросил Николай смеясь. – Ну, ну!…
В это время неслышными шагами, с деловым, озабоченным и вместе христиански кротким видом, никогда не покидавшим ее, вошла в комнату Анна Михайловна. Несмотря на то, что каждый день Анна Михайловна заставала графа в халате, всякий раз он конфузился при ней и просил извинения за свой костюм.
– Ничего, граф, голубчик, – сказала она, кротко закрывая глаза. – А к Безухому я съезжу, – сказала она. – Пьер приехал, и теперь мы всё достанем, граф, из его оранжерей. Мне и нужно было видеть его. Он мне прислал письмо от Бориса. Слава Богу, Боря теперь при штабе.
Граф обрадовался, что Анна Михайловна брала одну часть его поручений, и велел ей заложить маленькую карету.
– Вы Безухову скажите, чтоб он приезжал. Я его запишу. Что он с женой? – спросил он.
Анна Михайловна завела глаза, и на лице ее выразилась глубокая скорбь…
– Ах, мой друг, он очень несчастлив, – сказала она. – Ежели правда, что мы слышали, это ужасно. И думали ли мы, когда так радовались его счастию! И такая высокая, небесная душа, этот молодой Безухов! Да, я от души жалею его и постараюсь дать ему утешение, которое от меня будет зависеть.
– Да что ж такое? – спросили оба Ростова, старший и младший.
Анна Михайловна глубоко вздохнула: – Долохов, Марьи Ивановны сын, – сказала она таинственным шопотом, – говорят, совсем компрометировал ее. Он его вывел, пригласил к себе в дом в Петербурге, и вот… Она сюда приехала, и этот сорви голова за ней, – сказала Анна Михайловна, желая выразить свое сочувствие Пьеру, но в невольных интонациях и полуулыбкою выказывая сочувствие сорви голове, как она назвала Долохова. – Говорят, сам Пьер совсем убит своим горем.
– Ну, всё таки скажите ему, чтоб он приезжал в клуб, – всё рассеется. Пир горой будет.
На другой день, 3 го марта, во 2 м часу по полудни, 250 человек членов Английского клуба и 50 человек гостей ожидали к обеду дорогого гостя и героя Австрийского похода, князя Багратиона. В первое время по получении известия об Аустерлицком сражении Москва пришла в недоумение. В то время русские так привыкли к победам, что, получив известие о поражении, одни просто не верили, другие искали объяснений такому странному событию в каких нибудь необыкновенных причинах. В Английском клубе, где собиралось всё, что было знатного, имеющего верные сведения и вес, в декабре месяце, когда стали приходить известия, ничего не говорили про войну и про последнее сражение, как будто все сговорились молчать о нем. Люди, дававшие направление разговорам, как то: граф Ростопчин, князь Юрий Владимирович Долгорукий, Валуев, гр. Марков, кн. Вяземский, не показывались в клубе, а собирались по домам, в своих интимных кружках, и москвичи, говорившие с чужих голосов (к которым принадлежал и Илья Андреич Ростов), оставались на короткое время без определенного суждения о деле войны и без руководителей. Москвичи чувствовали, что что то нехорошо и что обсуждать эти дурные вести трудно, и потому лучше молчать. Но через несколько времени, как присяжные выходят из совещательной комнаты, появились и тузы, дававшие мнение в клубе, и всё заговорило ясно и определенно. Были найдены причины тому неимоверному, неслыханному и невозможному событию, что русские были побиты, и все стало ясно, и во всех углах Москвы заговорили одно и то же. Причины эти были: измена австрийцев, дурное продовольствие войска, измена поляка Пшебышевского и француза Ланжерона, неспособность Кутузова, и (потихоньку говорили) молодость и неопытность государя, вверившегося дурным и ничтожным людям. Но войска, русские войска, говорили все, были необыкновенны и делали чудеса храбрости. Солдаты, офицеры, генералы – были герои. Но героем из героев был князь Багратион, прославившийся своим Шенграбенским делом и отступлением от Аустерлица, где он один провел свою колонну нерасстроенною и целый день отбивал вдвое сильнейшего неприятеля. Тому, что Багратион выбран был героем в Москве, содействовало и то, что он не имел связей в Москве, и был чужой. В лице его отдавалась должная честь боевому, простому, без связей и интриг, русскому солдату, еще связанному воспоминаниями Итальянского похода с именем Суворова. Кроме того в воздаянии ему таких почестей лучше всего показывалось нерасположение и неодобрение Кутузову.