Углеродные нанотрубки

Поделись знанием:
(перенаправлено с «Углеродная нанотрубка»)
Перейти к: навигация, поиск

Углеродные нанотрубки — это протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров[1] (при этом существуют технологии, позволяющие сплетать их в нити неограниченной длины[2]), состоящие из одной или нескольких свёрнутых в трубку графеновых плоскостей и заканчивающиеся обычно полусферической головкой, которая может рассматриваться как половина молекулы фуллерена[3].





Структура нанотрубок

Идеальная нанотрубка представляет собой свёрнутую в цилиндр графитовую плоскость, то есть поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода. Результат такой операции зависит от угла ориентации графеновой плоскости относительно оси нанотрубки. Угол ориентации, в свою очередь, задаёт хиральность нанотрубки, которая определяет, в частности, её электрические характеристики[4].

Хиральность нанотрубок обозначается набором символов (m, n), указывающих координаты шестиугольника, который в результате сворачивания плоскости должен совпадать с шестиугольником, находящимся в начале координат.

Другой способ обозначения хиральности состоит в указании угла α между направлением сворачивания нанотрубки и направлением, в котором соседние шестиугольники имеют общую сторону. При этом выбирается наименьший угол, такой что 0° ≤ α ≤ 30°. Однако в этом случае для полного описания геометрии нанотрубки необходимо указать её диаметр[5].

Индексы хиральности однослойной нанотрубки (m, n) однозначным образом определяют её диаметр D. Указанная связь имеет следующий вид:

<math>D=\frac{\sqrt{3}d_{0}}{\pi} \cdot \sqrt{m^{2}+n^{2}+mn} </math>,

где <math>d_{0}</math> = 0,142 нм — расстояние между соседними атомами углерода в графитовой плоскости. Связь между индексами хиральности (m, n) и углом α даётся соотношением:

<math>\sin{\alpha}=\frac{m\sqrt{3}}{2\sqrt{m^{2}+n^{2}+mn}}</math>.

Среди различных возможных направлений сворачивания нанотрубок выделяются те, для которых совмещение шестиугольника (m, n) с началом координат не требует искажения его структуры. Этим направлениям соответствуют, в частности, углы α = 30° (armchair конфигурация) и α = 0° (zigzag конфигурация). Указанные конфигурации отвечают хиральностям (n, n) и (0, n) соответственно.

Одностенные нанотрубки

Структура одностенных (single-walled) нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы[6].

Особое место среди одностенных нанотрубок занимают так называемые armchair-нанотрубки или нанотрубки с хиральностью (10, 10). В нанотрубках такого типа две из С-С-связей, входящих в состав каждого шестичленного кольца, ориентированы параллельно продольной оси трубки. Нанотрубки с подобной структурой должны обладать чисто металлической структурой[7].

Многостенные нанотрубки

Многостенные (multi-walled) нанотрубки отличаются от одностенных значительно более широким разнообразием форм и конфигураций. Разнообразие структур проявляется как в продольном, так и в поперечном направлении.

Структура типа «матрёшки» (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур напоминает свиток (scroll). Для всех структур на рис. характерно значение расстояния между соседними графеновыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита[8].

Реализация той или иной структуры многостенных нанотрубок в конкретной экспериментальной ситуации зависит от условий синтеза. Анализ имеющихся экспериментальных данных указывает, что наиболее типичной структурой многостенных нанотрубок является структура с попеременно расположенными по длине участками типа «русской матрёшки» и «папье-маше». При этом «трубки» меньшего размера последовательно вложены в трубки большего размера[8]. В пользу такой модели говорят, например, факты по интеркалированию калия или хлорида железа в «межтрубочное» пространство и образование структур типа «бусы».

История открытия

Фуллерен (C60) был открыт группой Смолли, Крото и Кёрла в 1985 г.[9], за что в 1996 г. эти исследователи были удостоены Нобелевской премии по химии. Что касается углеродных нанотрубок, то здесь нельзя назвать точную дату их открытия. Хотя общеизвестным является факт наблюдения структуры многостенных нанотрубок Иидзимой в 1991 г.[10], существуют более ранние свидетельства открытия углеродных нанотрубок. Так, например в 19741975 гг. Эндо и др.[11] опубликовали ряд работ с описанием тонких трубок с диаметром менее 100 Å, приготовленных методом конденсации из паров, однако более детального исследования структуры не было проведено. Группа ученых Института катализа СО АН СССР в 1977 году при изучении зауглероживания железохромовых катализаторов дегидрирования под микроскопом зарегистрировали образование «пустотелых углеродных дендритов»[12], при этом был предложен механизм образования и описано строение стенок. В 1992 в Nature[13] была опубликована статья, в которой утверждалось, что нанотрубки наблюдали в 1953 г. Годом ранее, в 1952, в статье советских учёных Радушкевича и Лукьяновича[14] сообщалось об электронно-микроскопическом наблюдении волокон с диаметром порядка 100 нм, полученных при термическом разложении окиси углерода на железном катализаторе. Эти исследования также не были продолжены. В 2006 г, углеродные нанотрубки были обнаружены в дамасской стали[15].

Существует множество теоретических работ по предсказанию данной аллотропной формы углерода. В работе[16] химик Джонс (Дедалус) размышлял о свёрнутых трубах графита. В работе Л. А. Чернозатонского и др.[17], вышедшую в тот же год, что и работа Ииджимы, были получены и описаны углеродные нанотрубы, а М. Ю. Корнилов, профессор кафедры органической химии Киевского национального университета, не только предсказал существования одностенных углеродных нанотруб в 1986 г., но и высказал предположение об их большой упругости[18].

Впервые возможность образования наночастиц в виде трубок была обнаружена для углерода. В настоящее время подобные структуры получены из нитрида бора, карбида кремния, оксидов переходных металлов и некоторых других соединений. Диаметр нанотрубок варьируется от одного до нескольких десятков нанометров, а длина достигает нескольких микрон.

Структурные свойства

  • упругие свойства; дефекты при превышении критической нагрузки:
    • в большинстве случаев представляют собой разрушенную ячейку-гексагон решётки — с образованием пентагона или септагона на её месте. Из специфических особенностей графена следует, что дефектные нанотрубки будут искажаться аналогичным образом, то есть с возникновением выпуклостей (при 5-и) и седловидных поверхностей (при 7-и). Наибольший же интерес в данном случае представляет комбинация данных искажений, особенно расположенных друг напротив друга (дефект Стоуна — Уэйлса) — это уменьшает прочность нанотрубки, но формирует в её структуре устойчивое искажение, меняющее свойства последней: иными словами, в нанотрубке образуется постоянный изгиб.
  • открытые и закрытые нанотрубки

Электронные свойства нанотрубок

Электронные свойства графитовой плоскости

Все точки K первой зоны Бриллюэна отстоят друг от друга на вектор трансляции обратной решётки, поэтому все они на самом деле эквивалентны. Аналогично, эквивалентны все точки K'.

  • Дираковские точки (См. подробнее Графен)

Графит — полуметалл, что видно невооружённым глазом по характеру отражения света. Можно убедиться, что электроны p-орбиталей полностью заполняют первую зону Бриллюэна. Таким образом, оказывается, что уровень Ферми графитовой плоскости проходит точно по дираковским точкам, т. о. вся поверхность Ферми (точнее, линия в двумерном случае) вырождается в две неэквивалентные точки.

Если энергия электронов мало отличается от энергии Ферми, то можно заменить истинный спектр электронов вблизи дираковской точки на простой конический, такой же как спектр безмассовой частицы, подчиняющейся уравнению Дирака в 2+1 измерениях.

  • SU(4) симметрия

Преобразование спектра при сворачивании плоскости в трубку

Тип проводимости нанотрубок зависит от их хиральности, т.е. от группы симметрии, к которым принадлежит конкретная нанотрубка, причем он подчиняется простому правилу: если индексы нанотрубки равны между собой или же их разность делится на три, нанотрубка является полуметаллом, в любом другом случае они проявляют полупроводниковые свойства.

Происхождение этого явления в следующем. Графитовую плоскость (графен) можно представить в виде бесконечно протяженной, в то время как нанотрубку с известными оговорками как одномерной объект. Если представить нанотрубный графеновый фрагмент в виде его развертки на графитовый лист, то видно, что в направлении свертки трубки количество разрешенных волновых векторов уменьшается до значений, вполне определенных индексами хиральности (длина такого вектора k обратно пропорциональна периметру трубки). На рисунке показаны примеры разрешенных k-состояний металлической и полупроводниковой нанотрубки. Видно, что если разрешённое значение волнового вектора совпадает с точкой К, в зонной картине нанотрубки также будет существовать пересечение валентной зоны и зоны проводимости и нанотрубка, соответственно, будет проявлять полуметаллические свойства, а в другом случае – полупроводниковые[19].

  • Поведение спектра при приложении продольного магнитного поля

Учёт взаимодействия электронов

Сверхпроводимость в нанотрубках

Сверхпроводимость углеродных нанотрубок открыта исследователями из Франции и России (ИПТМ РАН, Черноголовка). Ими были проведены измерения вольт-амперных характеристик:

  • отдельной одностенной нанотрубки диаметром ~1 нм;
  • свёрнутого в жгут большого числа одностенных нанотрубок;
  • также индивидуальных многостенных нанотрубок.

При температуре, близкой к 4 К, между двумя сверхпроводящими металлическими контактами наблюдался ток. В отличие от обычных трёхмерных проводников, перенос заряда в нанотрубке имеет ряд особенностей, которые, судя по всему, объясняются одномерным характером переноса (как, например, квантование сопротивления R: см. статью, опубликованной в Science[20]).

Экситоны и биэкситоны в нанотрубках

Эксито́н (лат. excito — «возбуждаю»)— водородоподобная квазичастица, представляющая собой электронное возбуждение в диэлектрике или полупроводнике, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы.

Хотя экситон состоит из электрона и дырки, его следует считать самостоятельной элементарной (не сводимой) частицей в случаях, когда энергия взаимодействия электрона и дырки имеет тот же порядок, что и энергия их движения, а энергия взаимодействия между двумя экситонами мала по сравнению с энергией каждого из них. Экситон можно считать элементарной квазичастицей в тех явлениях, в которых он выступает как целое образование, не подвергающееся воздействиям, способным его разрушить.

Биэкситон— связаное состояние двух экситонов. Представляет собой, фактически, экситонную молекулу.

Впервые идея о возможности образования экситонной молекулы и некоторые её свойства были описаны независимо С. А. Москаленко и М. А. Лампертом.

Образование биэкситона проявляется в оптических спектрах поглощения в виде дискретных полос, сходящихся в коротковолновую сторону по водородоподобному закону. Из такого строения спектров следует, что возможно образование не только основного, но и возбуждённых состояний биэкситонов.

Стабильность биэкситона должна зависеть от энергии связи самого экситона, отношения эффективных масс электронов и дырок и их анизотропии.

Энергия образования биэкситона меньше удвоенной энергии экситона на величину энергии связи биэкситона.

Оптические свойства нанотрубок

Полупроводниковые модификации углеродных нанотрубок (разность индексов хиральности не кратна трём) являются прямозонными полупроводниками. Это означает, что в них может происходить непосредственная рекомбинация электрон-дырочных пар, приводящая к испусканию фотона. Прямозонность автоматически включает углеродные нанотрубки в число материалов оптоэлектроники.

Мемристорные свойства нанотрубок

В 2009 г., Yao, Zhang и др.[21] продемонстрировали мемристор на основе однослойных горизонтально ориентированных углеродных нанотрубоках расположенных на диэлектрической подложке. Проявление мемристорного эффекта в представленной структуре было обусловлено взаимодействием УНТ с диэлектрической подложкой и захватом носителей заряда на границе раздела УНТ/SiO2.

В 2011 г., Vasu, Sampath и др.[22] обнаружили мемристорный эффект на массиве разориентированных многослойных углеродных нанотрубок. Было установлено, что резистивное переключение в массиве обусловлено формированием проводящих каналов из УНТ ориентированных электрическим полем.

В 2013 г., Ageev, Blinov и др.[23] сообщили об обнаружении мемристорного эффекта на пучках вертикально ориентированных углеродных нанотрубок при исследовании методом сканирующей туннельной микроскопии. После, в 2015 г. эта же группа ученых показала[24] возможность резистивного переключения в индивидуальных вертикально ориентированных УНТ. Обнаруженный мемристорный эффект был основан на возникновении внутреннего электрического поля в УНТ при ее деформации.

Свойства интеркалированных нанотрубок

Возможные применения нанотрубок

  • Механические применения: сверхпрочные нити, композитные материалы, нановесы.
  • Применения в микроэлектронике: транзисторы, нанопровода, прозрачные проводящие поверхности, топливные элементы.
  • Для создания соединений между биологическими нейронами и электронными устройствами в новейших нейрокомпьютерных разработках.
  • Капиллярные применения: капсулы для активных молекул, хранение металлов и газов, нанопипетки.
  • Оптические применения: дисплеи, светодиоды.
  • Медицина (в стадии активной разработки).
  • Одностенные нанотрубки (индивидуальные, в небольших сборках или в сетях) являются миниатюрными датчиками для обнаружения молекул в газовой среде или в растворах с ультравысокой чувствительностью — при адсорбции на поверхности нанотрубки молекул её электросопротивление, а также характеристики нанотранзистора могут изменяться. Такие нанодатчики могут использоваться для мониторинга окружающей среды, в военных, медицинских и биотехнологических применениях.
  • Трос для космического лифта: нанотрубки, теоретически, могут держать огромный вес — до тонны на квадратный миллиметр. Однако получить достаточно длинные углеродные трубки с толщиной стенок в один атом не удавалось до сих пор [25], из-за чего приходится использовать нити, сплетённые из относительно коротких нанотрубок, что уменьшает итоговую прочность.
  • Листы из углеродных нанотрубок можно использовать в качестве плоских прозрачных громкоговорителей, к такому выводу пришли китайские учёные[26]
  • Искусственные мышцы. Путём введения парафина в скрученную нить из нанотрубок международной команде ученых из университета Техаса удалось создать искусственную мышцу, которая в 85 раз сильнее человеческой[27]
  • Генераторы энергии и двигатели. Нити из парафина и углеродных трубок могут поглощать тепловую и световую энергию и преобразовывать её в механическую. Опыт показывает, что такие нити выдерживают более миллиона циклов скручивания/раскручивания со скоростью 12.500 об/мин или 1.200 циклов сжатия/растяжения в минуту без видимых признаков износа.[28] Такие нити могут применяться для выработки энергии из солнечного света.

Получение углеродных нанотрубок

Развитие методов синтеза углеродных нанотрубок (УНТ) шло по пути снижения температур синтеза. После создания технологии получения фуллеренов было обнаружено, что при электродуговом испарении графитовых электродов наряду с образованием фуллеренов образуются протяженные цилиндрические структуры[29] . Микроскопист Сумио Ииджима, используя просвечивающий электронный микроскоп (ПЭМ), первым идентифицировал эти структуры как нанотрубки. К высокотемпературным методам получения УНТ относится электродуговой метод. Если испарить графитовый стержень (анод) в электрической дуге, то на противоположном электроде (катоде) образуется жесткий углеродный нарост (депозит) в мягкой сердцевине которого содержатся многостенные УНТ с диаметром 15-20 нм и длиной более 1 мкм.

Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская[30] и Швейцарская группы[31]. Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. Существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в своё время пришел на смену метода лазерного испарения (абляции) лучом лазера. Установка для абляции представляет собой обычную печь с резистивным нагревом, дающую температуру 1200°С. Чтобы получить в ней более высокие температуры, достаточно поместить в печь мишень из углерода и направить на неё лазерный луч, попеременно сканируя всю поверхность мишени. Так группа Смолли, используя дорогостоящие установки с короткоимпульсным лазером, получила в 1995 г. нанотрубки, «значительно упростив» технологию их синтеза[32].

Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта (по 0.5 ат.%) позволило увеличить выход УНТ до 70-90%[33]. С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом — методом каталитического пиролиза углеводородов (CVD), где в качестве катализатора использовались частицы металла группы железа. Один из вариантов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур.

Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в наночастице металла. При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное «выделение» избыточного углерода в виде искаженной полуфуллереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С, представляющую собой цилиндрический каркас-нанотрубку.

Температура плавления частицы в наноразмерном состоянии зависит от её радиуса. Чем меньше радиус, тем ниже температура плавления, вследствие эффекта Гиббса-Томпсона[34]. Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600°С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550°С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа «бамбук» или «вложенные наноконусы». Полученные материалы состоят только из углерода, но к экстраординарным характеристикам (например, модуль Юнга) наблюдаемым у одностенных углеродных нанотрубок, получаемых методом лазерной абляции или электродуговым синтезом, они даже близко не приближаются.

Волокна из углеродных трубок

Для практического применения УНТ в настоящее время ищется способ создания на их основе протяжённых волокон, которые в свою очередь можно будет сплести в многожильный провод. Уже удалось создать из углеродных нанотрубок протяженные волокна, которые обладают высокой электропроводностью и превосходящей сталь прочностью[35].

Токсичность нанотрубок

Результаты экспериментов, проведённых в последние годы, показали, что длинные многостенные углеродные нанотрубки (МНТ) могут вызвать отклик, аналогичный асбестовым волокнам. У людей, занятых на добыче и переработке асбеста, вероятность возникновения опухолей и рака лёгких в несколько раз больше, чем у основного населения. Канцерогенность волокон разных видов асбеста весьма различна и зависит от диаметра и типа волокон. Благодаря своему малому весу и размерам, углеродные нанотрубки проникают в дыхательные пути вместе с воздухом. В итоге они концентрируются в плевре. Мелкие частицы и короткие нанотрубки выходят через поры в грудной стенке (диаметр 3—8 мкм), а длинные нанотрубки могут задерживаться и со временем вызвать патологические изменения.

Сравнительные эксперименты по добавке одностенных углеродных нанотрубок (ОНТ) в пищу мышей показали отсутствие заметной реакции последних в случае нанотрубок с длиной порядка микрон. Тогда как использование укороченных ОНТ с длиной 200—500 нм приводило к «впиванию» нанотрубок-игл в стенки желудка.

Очистка от катализаторов

Наноразмерные металлические катализаторы являются важными компонентами многих эффективных методов синтеза УНТ и в особенности для CVD-процессов. Они также позволяют в некоторой степени контролировать структуру и хиральность получаемых УНТ.[36] Во время синтеза катализаторы могут конвертировать углеродсодержащие соединения в трубчатый углерод, при этом они сами как правило становятся частично закапсулированны графитизированными слоями углерода. Таким образом, они могут стать частью результируемого УНТ-продукта.[37] Такие металлические примеси могут быть проблематичными для многих применений УНТ. Катализаторы как Никель, Кобальт или Иттрий могут вызвать к примеру, токсикологические проблемы.[38] В то время как незакапсулированные катализаторы сравнительно легко вымываются минеральными кислотами, закапсулированные катализаторы требуют предварительной окислительной обработки для вскрытия покрывающей оболочки катализаторов.[39] Эффективное удаление катализаторов, особенно закапсулированных, с сохранением структуры УНТ представляет собой сложную и трудоёмкую процедуру. Многие варианты очистки УНТ уже были изучены и индивидуально оптимизированы с учётом качества используемых УНТ.[40][41] Новый подход к очистке УНТ, дающий возможность одновременно вскрывать и выпаривать закапсулированные металлические катализаторы является чрезвычайно быстрый нагрев УНТ и его примесей в термической плазме.[42]

Напишите отзыв о статье "Углеродные нанотрубки"

Примечания

  1. [www.sciencedaily.com/releases/2004/09/040917091336.htm Laboratory Grows World Record Length Carbon Nanotube]
  2. [www.youtube.com/watch?v=4XDJC64tDR0 Spinning nanotube fibers at Rice University - YouTube]. Проверено 27 января 2013.
  3. УФН, Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, апрель 2002 г., т. 172, № 4, ст. 401
  4. Углеродные нанотрубки, А. В. Елецкий, УФН, сентябрь 1997г, т. 167, № 9, ст. 954
  5. Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002 г., т. 172, № 4, ст. 403
  6. Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002 г., т. 172, № 4, ст. 404
  7. Углеродные нанотрубки, А. В. Елецкий, УФН, сентябрь 1997 г., т. 167, № 9, ст. 955
  8. 1 2 Углеродные нанотрубки и их эмиссионные свойства, А. В. Елецкий, УФН, апрель 2002 г., т. 172, № 4, ст. 408
  9. H.W. Kroto, J.R.Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318 162 (1985)
  10. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 56 (1991)
  11. A. Oberlin, M. Endo, and T. Koyama. High resolution electron microscope observations of graphitized carbon fibers Carbon, 14, 133 (1976)
  12. Буянов Р. А., Чесноков В. В., Афанасьев А. Д., Бабенко В. С. Карбидный механизм образования углеродистых отложений и их свойства на железохромовых катализаторах дегидрирования//Кинетика и катализ 1977. Т. 18. С. 1021.
  13. J.A.E. Gibson. Early nanotubes? Nature, 359, 369 (1992)
  14. Л. В. Радушкевич и В. М. Лукьянович. О структуре углерода, образующегося при термическом разложении окиси углерода на железном контакте. ЖФХ, 26, 88 (1952)
  15. [www.chemeurope.com/en/encyclopedia/Damascus_steel.html Углеродные нанотрубки в дамасской стали]
  16. D. E. H. Jones (Daedalus). New Scientist 110 80 (1986)
  17. З. Я. Косаковская, Л. А. Чернозатонский, Е. А. Фёдоров. Нановолоконная углеродная структура. Письма в ЖЭТФ 56 26 (1992)
  18. М. Ю. Корнилов. Нужен трубчатый углерод. Химия и жизнь 8 (1985)
  19. Чернозатонский Л. А. Сорокин П. Б. Углеродные нанотрубки: от фундаментальных исследований к нанотехнологиям / Под. ред. Ю.Н. Бубнова. — М.: Наука, 2007. — С. 154-174. — ISBN 978-5-02-035594-1.
  20. Science (Frank с сотр., Science, т. 280, с. 1744); 1998
  21. (22 December 2009) «Two-Terminal Nonvolatile Memories Based on Single-Walled Carbon Nanotubes». ACS Nano 3 (12): 4122–4126. DOI:10.1021/nn901263e.
  22. (August 2011) «Nonvolatile unipolar resistive switching in ultrathin films of graphene and carbon nanotubes». Solid State Communications 151 (16): 1084–1087. DOI:10.1016/j.ssc.2011.05.018.
  23. (11 December 2013) «[link.springer.com/article/10.1134/S1063784213120025 Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy]» (en). Technical Physics 58 (12): 1831–1836. DOI:10.1134/S1063784213120025. ISSN [worldcat.org/issn/1063-7842 1063-7842].
  24. (16 April 2015) «[link.springer.com/article/10.1134/S1063783415040034 Study of the resistive switching of vertically aligned carbon nanotubes by scanning tunneling microscopy]» (en). Physics of the Solid State 57 (4): 825–831. DOI:10.1134/S1063783415040034. ISSN [worldcat.org/issn/1063-7834 1063-7834].
  25. [web.archive.org/web/20130731074435/news.mail.ru/society/2933557/ Новости@Mail.Ru: Китайцы обошли всех — 18,5 сантиметров в длину]
  26. [pubs.acs.org/cgi-bin/abstract.cgi/nalefd/asap/abs/nl802750z.html Nano Letters: Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers] (29 октября 2008 г.)
  27. [iscience.ru/2012/11/22/sozdany-iskusstvennye-myshcy-iz-ugleroda-i-parafina/ iScience.ru — Будущее уже здесь, в наших новостяхСозданы искусственные мышцы из углерода и парафина | iScience.ru - Будущее уже здесь, в наших новостях. Новости науки]
  28. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles: www.sciencemag.org/content/338/6109/928 Science 16 November 2012: Vol. 338 no. 6109 pp. 928-932 DOI: 10.1126/science.1226762
  29. Iijima S, Nature (London) 354 56 (1991).
  30. Peter J. F. Harris at all. «High-resolution Electron Microscopy Studies of a Microporous Carbon produced by Arc-evaporation» // J. CHEM. SOC. FARADAY TRANS.,90(18), pp 2799—2802, (1994).
  31. W. A. de Heer and D. Ugarte. «Carbon Onions Produced by Heat Treatment of Carbon Soot and Their Relation to the 217.5 nm Interstellar Absorption Feature» // Chem. Phys. Lett. 207, (1993) 480—486.
  32. Guo T, Nikolaev P, Rinzler D, Tomanek D.T, Colbert D.T, Smalley R. «Self-Assembly of Tubular Fullerenes» // J. Phys. Chem. 99: 10694-7 (1995).
  33. V. Ivanov at all. «Catalytic production and purification of nanotubules having fullerene-scale diameters». Carbon 33, 12, (1995) 1727—1738.
  34. P. R. Couchman and W. A. Jesser. «Thermodynamic theory of size dependence of melting temperature in metals». Nature 269, (1977) 481—483.
  35. [lenta.ru/news/2013/01/11/nanospool/ Углеродные нанотрубки заплели в электропроводное волокно]
  36. Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, et al. (2006). «Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts». Nature Nanotechnology 1: 131-136. DOI:10.1038/nnano.2006.95.
  37. MacKenzie KJ, Dunens OM, Harris AT (2010). «An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds». Industrial & Engineering Chemical Research 49: 5323-38. DOI:10.1021/ie9019787.
  38. Jakubek LM, Marangoudakis S, Raingo J, Liu X, Lipscombe D, Hurt RH (2009). «The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes». Biomaterials 30: 6351-6357. DOI:10.1016/j.biomaterials.2009.08.009.
  39. Hou P-X, Liu C, Cheng H-M (2008). «Purification of carbon nanotubes». Carbon 46: 2003-2025. DOI:10.1016/j.carbon.2008.09.009.
  40. Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K (1994). «Purification of nanotubes». Nature 367: 519. DOI:10.1038/367519a0.
  41. Xu Y-Q, Peng H, Hauge RH, Smalley RE (2005). «Controlled multistep purification of single-walled carbon nanotubes». Nano Letters 5: 163-168. DOI:10.1021/nl048300s.
  42. Meyer-Plath A, Orts-Gil G, Petrov S et al. (2012). «Plasma-thermal purification and annealing of carbon nanotubes». Carbon 50: 3934-3942. DOI:10.1016/j.carbon.2012.04.049.

См. также

Литература

  • Лозовик Ю.Е., Попов А.М. [ufn.ru/ru/articles/1997/7/d/ Образование и рост углеродных наноструктур — фуллеренов, наночастиц, нанотрубок и конусов] // УФН. — 1997. — Т. 167, № 7. — С. 751–774.
  • Лозовик Ю.Е., Попов А.М. [ufn.ru/ru/articles/2007/7/j/ Свойства и нанотехнологические применения нанотрубок] // УФН. — 2007. — Т. 177. — С. 786–799.
  • Дьячков П.Н. Углеродные нанотрубки: строение, свойства, применения. — М.: Бином, 2006. — 293 с.

Ссылки

  • [rc.nsu.ru/text/metodics/ivanov5.html Статья Игоря Иванова на сайте «Физической лаборатории школьников»]
  • [nanotrubki.narod.ru/ Сайт про нанотрубки Фёдора Сенатова]
  • [ps.1september.ru/articlef.php?ID=200205624 Статья в газете «1-е сентября»]
  • [www.research-techart.ru/report/nanotubes-market.htm Маркетинговое исследование рынка углеродных нанотрубок]
  • [www.neotechproduct.ru/kompoz Композиционные материалы с полимерной матрицей и фуллеренсодержащими модификаторами]
  • www.gazeta.ru/science/2009/10/26_a_3276968.shtml
  • perst.isssph.kiae.ru/Inform/perst/9_23/n.asp?file=perst.htm&label=K_9_23_11
  • [www.nanoscantech.com/ru/gallery/gallery-82.html АСМ изображение углеродных нанотрубок]

Отрывок, характеризующий Углеродные нанотрубки

После перенесенного страдания князь Андрей чувствовал блаженство, давно не испытанное им. Все лучшие, счастливейшие минуты в его жизни, в особенности самое дальнее детство, когда его раздевали и клали в кроватку, когда няня, убаюкивая, пела над ним, когда, зарывшись головой в подушки, он чувствовал себя счастливым одним сознанием жизни, – представлялись его воображению даже не как прошедшее, а как действительность.
Около того раненого, очертания головы которого казались знакомыми князю Андрею, суетились доктора; его поднимали и успокоивали.
– Покажите мне… Ооооо! о! ооооо! – слышался его прерываемый рыданиями, испуганный и покорившийся страданию стон. Слушая эти стоны, князь Андрей хотел плакать. Оттого ли, что он без славы умирал, оттого ли, что жалко ему было расставаться с жизнью, от этих ли невозвратимых детских воспоминаний, оттого ли, что он страдал, что другие страдали и так жалостно перед ним стонал этот человек, но ему хотелось плакать детскими, добрыми, почти радостными слезами.
Раненому показали в сапоге с запекшейся кровью отрезанную ногу.
– О! Ооооо! – зарыдал он, как женщина. Доктор, стоявший перед раненым, загораживая его лицо, отошел.
– Боже мой! Что это? Зачем он здесь? – сказал себе князь Андрей.
В несчастном, рыдающем, обессилевшем человеке, которому только что отняли ногу, он узнал Анатоля Курагина. Анатоля держали на руках и предлагали ему воду в стакане, края которого он не мог поймать дрожащими, распухшими губами. Анатоль тяжело всхлипывал. «Да, это он; да, этот человек чем то близко и тяжело связан со мною, – думал князь Андрей, не понимая еще ясно того, что было перед ним. – В чем состоит связь этого человека с моим детством, с моею жизнью? – спрашивал он себя, не находя ответа. И вдруг новое, неожиданное воспоминание из мира детского, чистого и любовного, представилось князю Андрею. Он вспомнил Наташу такою, какою он видел ее в первый раз на бале 1810 года, с тонкой шеей и тонкими рукамис готовым на восторг, испуганным, счастливым лицом, и любовь и нежность к ней, еще живее и сильнее, чем когда либо, проснулись в его душе. Он вспомнил теперь ту связь, которая существовала между им и этим человеком, сквозь слезы, наполнявшие распухшие глаза, мутно смотревшим на него. Князь Андрей вспомнил все, и восторженная жалость и любовь к этому человеку наполнили его счастливое сердце.
Князь Андрей не мог удерживаться более и заплакал нежными, любовными слезами над людьми, над собой и над их и своими заблуждениями.
«Сострадание, любовь к братьям, к любящим, любовь к ненавидящим нас, любовь к врагам – да, та любовь, которую проповедовал бог на земле, которой меня учила княжна Марья и которой я не понимал; вот отчего мне жалко было жизни, вот оно то, что еще оставалось мне, ежели бы я был жив. Но теперь уже поздно. Я знаю это!»


Страшный вид поля сражения, покрытого трупами и ранеными, в соединении с тяжестью головы и с известиями об убитых и раненых двадцати знакомых генералах и с сознанием бессильности своей прежде сильной руки произвели неожиданное впечатление на Наполеона, который обыкновенно любил рассматривать убитых и раненых, испытывая тем свою душевную силу (как он думал). В этот день ужасный вид поля сражения победил ту душевную силу, в которой он полагал свою заслугу и величие. Он поспешно уехал с поля сражения и возвратился к Шевардинскому кургану. Желтый, опухлый, тяжелый, с мутными глазами, красным носом и охриплым голосом, он сидел на складном стуле, невольно прислушиваясь к звукам пальбы и не поднимая глаз. Он с болезненной тоской ожидал конца того дела, которого он считал себя причиной, но которого он не мог остановить. Личное человеческое чувство на короткое мгновение взяло верх над тем искусственным призраком жизни, которому он служил так долго. Он на себя переносил те страдания и ту смерть, которые он видел на поле сражения. Тяжесть головы и груди напоминала ему о возможности и для себя страданий и смерти. Он в эту минуту не хотел для себя ни Москвы, ни победы, ни славы. (Какой нужно было ему еще славы?) Одно, чего он желал теперь, – отдыха, спокойствия и свободы. Но когда он был на Семеновской высоте, начальник артиллерии предложил ему выставить несколько батарей на эти высоты, для того чтобы усилить огонь по столпившимся перед Князьковым русским войскам. Наполеон согласился и приказал привезти ему известие о том, какое действие произведут эти батареи.
Адъютант приехал сказать, что по приказанию императора двести орудий направлены на русских, но что русские все так же стоят.
– Наш огонь рядами вырывает их, а они стоят, – сказал адъютант.
– Ils en veulent encore!.. [Им еще хочется!..] – сказал Наполеон охриплым голосом.
– Sire? [Государь?] – повторил не расслушавший адъютант.
– Ils en veulent encore, – нахмурившись, прохрипел Наполеон осиплым голосом, – donnez leur en. [Еще хочется, ну и задайте им.]
И без его приказания делалось то, чего он хотел, и он распорядился только потому, что думал, что от него ждали приказания. И он опять перенесся в свой прежний искусственный мир призраков какого то величия, и опять (как та лошадь, ходящая на покатом колесе привода, воображает себе, что она что то делает для себя) он покорно стал исполнять ту жестокую, печальную и тяжелую, нечеловеческую роль, которая ему была предназначена.
И не на один только этот час и день были помрачены ум и совесть этого человека, тяжеле всех других участников этого дела носившего на себе всю тяжесть совершавшегося; но и никогда, до конца жизни, не мог понимать он ни добра, ни красоты, ни истины, ни значения своих поступков, которые были слишком противоположны добру и правде, слишком далеки от всего человеческого, для того чтобы он мог понимать их значение. Он не мог отречься от своих поступков, восхваляемых половиной света, и потому должен был отречься от правды и добра и всего человеческого.
Не в один только этот день, объезжая поле сражения, уложенное мертвыми и изувеченными людьми (как он думал, по его воле), он, глядя на этих людей, считал, сколько приходится русских на одного француза, и, обманывая себя, находил причины радоваться, что на одного француза приходилось пять русских. Не в один только этот день он писал в письме в Париж, что le champ de bataille a ete superbe [поле сражения было великолепно], потому что на нем было пятьдесят тысяч трупов; но и на острове Св. Елены, в тиши уединения, где он говорил, что он намерен был посвятить свои досуги изложению великих дел, которые он сделал, он писал:
«La guerre de Russie eut du etre la plus populaire des temps modernes: c'etait celle du bon sens et des vrais interets, celle du repos et de la securite de tous; elle etait purement pacifique et conservatrice.
C'etait pour la grande cause, la fin des hasards elle commencement de la securite. Un nouvel horizon, de nouveaux travaux allaient se derouler, tout plein du bien etre et de la prosperite de tous. Le systeme europeen se trouvait fonde; il n'etait plus question que de l'organiser.
Satisfait sur ces grands points et tranquille partout, j'aurais eu aussi mon congres et ma sainte alliance. Ce sont des idees qu'on m'a volees. Dans cette reunion de grands souverains, nous eussions traites de nos interets en famille et compte de clerc a maitre avec les peuples.
L'Europe n'eut bientot fait de la sorte veritablement qu'un meme peuple, et chacun, en voyageant partout, se fut trouve toujours dans la patrie commune. Il eut demande toutes les rivieres navigables pour tous, la communaute des mers, et que les grandes armees permanentes fussent reduites desormais a la seule garde des souverains.
De retour en France, au sein de la patrie, grande, forte, magnifique, tranquille, glorieuse, j'eusse proclame ses limites immuables; toute guerre future, purement defensive; tout agrandissement nouveau antinational. J'eusse associe mon fils a l'Empire; ma dictature eut fini, et son regne constitutionnel eut commence…
Paris eut ete la capitale du monde, et les Francais l'envie des nations!..
Mes loisirs ensuite et mes vieux jours eussent ete consacres, en compagnie de l'imperatrice et durant l'apprentissage royal de mon fils, a visiter lentement et en vrai couple campagnard, avec nos propres chevaux, tous les recoins de l'Empire, recevant les plaintes, redressant les torts, semant de toutes parts et partout les monuments et les bienfaits.
Русская война должна бы была быть самая популярная в новейшие времена: это была война здравого смысла и настоящих выгод, война спокойствия и безопасности всех; она была чисто миролюбивая и консервативная.
Это было для великой цели, для конца случайностей и для начала спокойствия. Новый горизонт, новые труды открывались бы, полные благосостояния и благоденствия всех. Система европейская была бы основана, вопрос заключался бы уже только в ее учреждении.
Удовлетворенный в этих великих вопросах и везде спокойный, я бы тоже имел свой конгресс и свой священный союз. Это мысли, которые у меня украли. В этом собрании великих государей мы обсуживали бы наши интересы семейно и считались бы с народами, как писец с хозяином.
Европа действительно скоро составила бы таким образом один и тот же народ, и всякий, путешествуя где бы то ни было, находился бы всегда в общей родине.
Я бы выговорил, чтобы все реки были судоходны для всех, чтобы море было общее, чтобы постоянные, большие армии были уменьшены единственно до гвардии государей и т.д.
Возвратясь во Францию, на родину, великую, сильную, великолепную, спокойную, славную, я провозгласил бы границы ее неизменными; всякую будущую войну защитительной; всякое новое распространение – антинациональным; я присоединил бы своего сына к правлению империей; мое диктаторство кончилось бы, в началось бы его конституционное правление…
Париж был бы столицей мира и французы предметом зависти всех наций!..
Потом мои досуги и последние дни были бы посвящены, с помощью императрицы и во время царственного воспитывания моего сына, на то, чтобы мало помалу посещать, как настоящая деревенская чета, на собственных лошадях, все уголки государства, принимая жалобы, устраняя несправедливости, рассевая во все стороны и везде здания и благодеяния.]
Он, предназначенный провидением на печальную, несвободную роль палача народов, уверял себя, что цель его поступков была благо народов и что он мог руководить судьбами миллионов и путем власти делать благодеяния!
«Des 400000 hommes qui passerent la Vistule, – писал он дальше о русской войне, – la moitie etait Autrichiens, Prussiens, Saxons, Polonais, Bavarois, Wurtembergeois, Mecklembourgeois, Espagnols, Italiens, Napolitains. L'armee imperiale, proprement dite, etait pour un tiers composee de Hollandais, Belges, habitants des bords du Rhin, Piemontais, Suisses, Genevois, Toscans, Romains, habitants de la 32 e division militaire, Breme, Hambourg, etc.; elle comptait a peine 140000 hommes parlant francais. L'expedition do Russie couta moins de 50000 hommes a la France actuelle; l'armee russe dans la retraite de Wilna a Moscou, dans les differentes batailles, a perdu quatre fois plus que l'armee francaise; l'incendie de Moscou a coute la vie a 100000 Russes, morts de froid et de misere dans les bois; enfin dans sa marche de Moscou a l'Oder, l'armee russe fut aussi atteinte par, l'intemperie de la saison; elle ne comptait a son arrivee a Wilna que 50000 hommes, et a Kalisch moins de 18000».
[Из 400000 человек, которые перешли Вислу, половина была австрийцы, пруссаки, саксонцы, поляки, баварцы, виртембергцы, мекленбургцы, испанцы, итальянцы и неаполитанцы. Императорская армия, собственно сказать, была на треть составлена из голландцев, бельгийцев, жителей берегов Рейна, пьемонтцев, швейцарцев, женевцев, тосканцев, римлян, жителей 32 й военной дивизии, Бремена, Гамбурга и т.д.; в ней едва ли было 140000 человек, говорящих по французски. Русская экспедиция стоила собственно Франции менее 50000 человек; русская армия в отступлении из Вильны в Москву в различных сражениях потеряла в четыре раза более, чем французская армия; пожар Москвы стоил жизни 100000 русских, умерших от холода и нищеты в лесах; наконец во время своего перехода от Москвы к Одеру русская армия тоже пострадала от суровости времени года; по приходе в Вильну она состояла только из 50000 людей, а в Калише менее 18000.]
Он воображал себе, что по его воле произошла война с Россией, и ужас совершившегося не поражал его душу. Он смело принимал на себя всю ответственность события, и его помраченный ум видел оправдание в том, что в числе сотен тысяч погибших людей было меньше французов, чем гессенцев и баварцев.


Несколько десятков тысяч человек лежало мертвыми в разных положениях и мундирах на полях и лугах, принадлежавших господам Давыдовым и казенным крестьянам, на тех полях и лугах, на которых сотни лет одновременно сбирали урожаи и пасли скот крестьяне деревень Бородина, Горок, Шевардина и Семеновского. На перевязочных пунктах на десятину места трава и земля были пропитаны кровью. Толпы раненых и нераненых разных команд людей, с испуганными лицами, с одной стороны брели назад к Можайску, с другой стороны – назад к Валуеву. Другие толпы, измученные и голодные, ведомые начальниками, шли вперед. Третьи стояли на местах и продолжали стрелять.
Над всем полем, прежде столь весело красивым, с его блестками штыков и дымами в утреннем солнце, стояла теперь мгла сырости и дыма и пахло странной кислотой селитры и крови. Собрались тучки, и стал накрапывать дождик на убитых, на раненых, на испуганных, и на изнуренных, и на сомневающихся людей. Как будто он говорил: «Довольно, довольно, люди. Перестаньте… Опомнитесь. Что вы делаете?»
Измученным, без пищи и без отдыха, людям той и другой стороны начинало одинаково приходить сомнение о том, следует ли им еще истреблять друг друга, и на всех лицах было заметно колебанье, и в каждой душе одинаково поднимался вопрос: «Зачем, для кого мне убивать и быть убитому? Убивайте, кого хотите, делайте, что хотите, а я не хочу больше!» Мысль эта к вечеру одинаково созрела в душе каждого. Всякую минуту могли все эти люди ужаснуться того, что они делали, бросить всо и побежать куда попало.
Но хотя уже к концу сражения люди чувствовали весь ужас своего поступка, хотя они и рады бы были перестать, какая то непонятная, таинственная сила еще продолжала руководить ими, и, запотелые, в порохе и крови, оставшиеся по одному на три, артиллеристы, хотя и спотыкаясь и задыхаясь от усталости, приносили заряды, заряжали, наводили, прикладывали фитили; и ядра так же быстро и жестоко перелетали с обеих сторон и расплюскивали человеческое тело, и продолжало совершаться то страшное дело, которое совершается не по воле людей, а по воле того, кто руководит людьми и мирами.
Тот, кто посмотрел бы на расстроенные зады русской армии, сказал бы, что французам стоит сделать еще одно маленькое усилие, и русская армия исчезнет; и тот, кто посмотрел бы на зады французов, сказал бы, что русским стоит сделать еще одно маленькое усилие, и французы погибнут. Но ни французы, ни русские не делали этого усилия, и пламя сражения медленно догорало.
Русские не делали этого усилия, потому что не они атаковали французов. В начале сражения они только стояли по дороге в Москву, загораживая ее, и точно так же они продолжали стоять при конце сражения, как они стояли при начале его. Но ежели бы даже цель русских состояла бы в том, чтобы сбить французов, они не могли сделать это последнее усилие, потому что все войска русских были разбиты, не было ни одной части войск, не пострадавшей в сражении, и русские, оставаясь на своих местах, потеряли половину своего войска.
Французам, с воспоминанием всех прежних пятнадцатилетних побед, с уверенностью в непобедимости Наполеона, с сознанием того, что они завладели частью поля сраженья, что они потеряли только одну четверть людей и что у них еще есть двадцатитысячная нетронутая гвардия, легко было сделать это усилие. Французам, атаковавшим русскую армию с целью сбить ее с позиции, должно было сделать это усилие, потому что до тех пор, пока русские, точно так же как и до сражения, загораживали дорогу в Москву, цель французов не была достигнута и все их усилия и потери пропали даром. Но французы не сделали этого усилия. Некоторые историки говорят, что Наполеону стоило дать свою нетронутую старую гвардию для того, чтобы сражение было выиграно. Говорить о том, что бы было, если бы Наполеон дал свою гвардию, все равно что говорить о том, что бы было, если б осенью сделалась весна. Этого не могло быть. Не Наполеон не дал своей гвардии, потому что он не захотел этого, но этого нельзя было сделать. Все генералы, офицеры, солдаты французской армии знали, что этого нельзя было сделать, потому что упадший дух войска не позволял этого.
Не один Наполеон испытывал то похожее на сновиденье чувство, что страшный размах руки падает бессильно, но все генералы, все участвовавшие и не участвовавшие солдаты французской армии, после всех опытов прежних сражений (где после вдесятеро меньших усилий неприятель бежал), испытывали одинаковое чувство ужаса перед тем врагом, который, потеряв половину войска, стоял так же грозно в конце, как и в начале сражения. Нравственная сила французской, атакующей армии была истощена. Не та победа, которая определяется подхваченными кусками материи на палках, называемых знаменами, и тем пространством, на котором стояли и стоят войска, – а победа нравственная, та, которая убеждает противника в нравственном превосходстве своего врага и в своем бессилии, была одержана русскими под Бородиным. Французское нашествие, как разъяренный зверь, получивший в своем разбеге смертельную рану, чувствовало свою погибель; но оно не могло остановиться, так же как и не могло не отклониться вдвое слабейшее русское войско. После данного толчка французское войско еще могло докатиться до Москвы; но там, без новых усилий со стороны русского войска, оно должно было погибнуть, истекая кровью от смертельной, нанесенной при Бородине, раны. Прямым следствием Бородинского сражения было беспричинное бегство Наполеона из Москвы, возвращение по старой Смоленской дороге, погибель пятисоттысячного нашествия и погибель наполеоновской Франции, на которую в первый раз под Бородиным была наложена рука сильнейшего духом противника.



Для человеческого ума непонятна абсолютная непрерывность движения. Человеку становятся понятны законы какого бы то ни было движения только тогда, когда он рассматривает произвольно взятые единицы этого движения. Но вместе с тем из этого то произвольного деления непрерывного движения на прерывные единицы проистекает большая часть человеческих заблуждений.
Известен так называемый софизм древних, состоящий в том, что Ахиллес никогда не догонит впереди идущую черепаху, несмотря на то, что Ахиллес идет в десять раз скорее черепахи: как только Ахиллес пройдет пространство, отделяющее его от черепахи, черепаха пройдет впереди его одну десятую этого пространства; Ахиллес пройдет эту десятую, черепаха пройдет одну сотую и т. д. до бесконечности. Задача эта представлялась древним неразрешимою. Бессмысленность решения (что Ахиллес никогда не догонит черепаху) вытекала из того только, что произвольно были допущены прерывные единицы движения, тогда как движение и Ахиллеса и черепахи совершалось непрерывно.
Принимая все более и более мелкие единицы движения, мы только приближаемся к решению вопроса, но никогда не достигаем его. Только допустив бесконечно малую величину и восходящую от нее прогрессию до одной десятой и взяв сумму этой геометрической прогрессии, мы достигаем решения вопроса. Новая отрасль математики, достигнув искусства обращаться с бесконечно малыми величинами, и в других более сложных вопросах движения дает теперь ответы на вопросы, казавшиеся неразрешимыми.
Эта новая, неизвестная древним, отрасль математики, при рассмотрении вопросов движения, допуская бесконечно малые величины, то есть такие, при которых восстановляется главное условие движения (абсолютная непрерывность), тем самым исправляет ту неизбежную ошибку, которую ум человеческий не может не делать, рассматривая вместо непрерывного движения отдельные единицы движения.
В отыскании законов исторического движения происходит совершенно то же.
Движение человечества, вытекая из бесчисленного количества людских произволов, совершается непрерывно.
Постижение законов этого движения есть цель истории. Но для того, чтобы постигнуть законы непрерывного движения суммы всех произволов людей, ум человеческий допускает произвольные, прерывные единицы. Первый прием истории состоит в том, чтобы, взяв произвольный ряд непрерывных событий, рассматривать его отдельно от других, тогда как нет и не может быть начала никакого события, а всегда одно событие непрерывно вытекает из другого. Второй прием состоит в том, чтобы рассматривать действие одного человека, царя, полководца, как сумму произволов людей, тогда как сумма произволов людских никогда не выражается в деятельности одного исторического лица.
Историческая наука в движении своем постоянно принимает все меньшие и меньшие единицы для рассмотрения и этим путем стремится приблизиться к истине. Но как ни мелки единицы, которые принимает история, мы чувствуем, что допущение единицы, отделенной от другой, допущение начала какого нибудь явления и допущение того, что произволы всех людей выражаются в действиях одного исторического лица, ложны сами в себе.
Всякий вывод истории, без малейшего усилия со стороны критики, распадается, как прах, ничего не оставляя за собой, только вследствие того, что критика избирает за предмет наблюдения большую или меньшую прерывную единицу; на что она всегда имеет право, так как взятая историческая единица всегда произвольна.
Только допустив бесконечно малую единицу для наблюдения – дифференциал истории, то есть однородные влечения людей, и достигнув искусства интегрировать (брать суммы этих бесконечно малых), мы можем надеяться на постигновение законов истории.
Первые пятнадцать лет XIX столетия в Европе представляют необыкновенное движение миллионов людей. Люди оставляют свои обычные занятия, стремятся с одной стороны Европы в другую, грабят, убивают один другого, торжествуют и отчаиваются, и весь ход жизни на несколько лет изменяется и представляет усиленное движение, которое сначала идет возрастая, потом ослабевая. Какая причина этого движения или по каким законам происходило оно? – спрашивает ум человеческий.
Историки, отвечая на этот вопрос, излагают нам деяния и речи нескольких десятков людей в одном из зданий города Парижа, называя эти деяния и речи словом революция; потом дают подробную биографию Наполеона и некоторых сочувственных и враждебных ему лиц, рассказывают о влиянии одних из этих лиц на другие и говорят: вот отчего произошло это движение, и вот законы его.
Но ум человеческий не только отказывается верить в это объяснение, но прямо говорит, что прием объяснения не верен, потому что при этом объяснении слабейшее явление принимается за причину сильнейшего. Сумма людских произволов сделала и революцию и Наполеона, и только сумма этих произволов терпела их и уничтожила.
«Но всякий раз, когда были завоевания, были завоеватели; всякий раз, когда делались перевороты в государстве, были великие люди», – говорит история. Действительно, всякий раз, когда являлись завоеватели, были и войны, отвечает ум человеческий, но это не доказывает, чтобы завоеватели были причинами войн и чтобы возможно было найти законы войны в личной деятельности одного человека. Всякий раз, когда я, глядя на свои часы, вижу, что стрелка подошла к десяти, я слышу, что в соседней церкви начинается благовест, но из того, что всякий раз, что стрелка приходит на десять часов тогда, как начинается благовест, я не имею права заключить, что положение стрелки есть причина движения колоколов.
Всякий раз, как я вижу движение паровоза, я слышу звук свиста, вижу открытие клапана и движение колес; но из этого я не имею права заключить, что свист и движение колес суть причины движения паровоза.
Крестьяне говорят, что поздней весной дует холодный ветер, потому что почка дуба развертывается, и действительно, всякую весну дует холодный ветер, когда развертывается дуб. Но хотя причина дующего при развертыванье дуба холодного ветра мне неизвестна, я не могу согласиться с крестьянами в том, что причина холодного ветра есть раэвертыванье почки дуба, потому только, что сила ветра находится вне влияний почки. Я вижу только совпадение тех условий, которые бывают во всяком жизненном явлении, и вижу, что, сколько бы и как бы подробно я ни наблюдал стрелку часов, клапан и колеса паровоза и почку дуба, я не узнаю причину благовеста, движения паровоза и весеннего ветра. Для этого я должен изменить совершенно свою точку наблюдения и изучать законы движения пара, колокола и ветра. То же должна сделать история. И попытки этого уже были сделаны.
Для изучения законов истории мы должны изменить совершенно предмет наблюдения, оставить в покое царей, министров и генералов, а изучать однородные, бесконечно малые элементы, которые руководят массами. Никто не может сказать, насколько дано человеку достигнуть этим путем понимания законов истории; но очевидно, что на этом пути только лежит возможность уловления исторических законов и что на этом пути не положено еще умом человеческим одной миллионной доли тех усилий, которые положены историками на описание деяний различных царей, полководцев и министров и на изложение своих соображений по случаю этих деяний.


Силы двунадесяти языков Европы ворвались в Россию. Русское войско и население отступают, избегая столкновения, до Смоленска и от Смоленска до Бородина. Французское войско с постоянно увеличивающеюся силой стремительности несется к Москве, к цели своего движения. Сила стремительности его, приближаясь к цели, увеличивается подобно увеличению быстроты падающего тела по мере приближения его к земле. Назади тысяча верст голодной, враждебной страны; впереди десятки верст, отделяющие от цели. Это чувствует всякий солдат наполеоновской армии, и нашествие надвигается само собой, по одной силе стремительности.
В русском войске по мере отступления все более и более разгорается дух озлобления против врага: отступая назад, оно сосредоточивается и нарастает. Под Бородиным происходит столкновение. Ни то, ни другое войско не распадаются, но русское войско непосредственно после столкновения отступает так же необходимо, как необходимо откатывается шар, столкнувшись с другим, с большей стремительностью несущимся на него шаром; и так же необходимо (хотя и потерявший всю свою силу в столкновении) стремительно разбежавшийся шар нашествия прокатывается еще некоторое пространство.
Русские отступают за сто двадцать верст – за Москву, французы доходят до Москвы и там останавливаются. В продолжение пяти недель после этого нет ни одного сражения. Французы не двигаются. Подобно смертельно раненному зверю, который, истекая кровью, зализывает свои раны, они пять недель остаются в Москве, ничего не предпринимая, и вдруг, без всякой новой причины, бегут назад: бросаются на Калужскую дорогу (и после победы, так как опять поле сражения осталось за ними под Малоярославцем), не вступая ни в одно серьезное сражение, бегут еще быстрее назад в Смоленск, за Смоленск, за Вильну, за Березину и далее.
В вечер 26 го августа и Кутузов, и вся русская армия были уверены, что Бородинское сражение выиграно. Кутузов так и писал государю. Кутузов приказал готовиться на новый бой, чтобы добить неприятеля не потому, чтобы он хотел кого нибудь обманывать, но потому, что он знал, что враг побежден, так же как знал это каждый из участников сражения.
Но в тот же вечер и на другой день стали, одно за другим, приходить известия о потерях неслыханных, о потере половины армии, и новое сражение оказалось физически невозможным.
Нельзя было давать сражения, когда еще не собраны были сведения, не убраны раненые, не пополнены снаряды, не сочтены убитые, не назначены новые начальники на места убитых, не наелись и не выспались люди.
А вместе с тем сейчас же после сражения, на другое утро, французское войско (по той стремительной силе движения, увеличенного теперь как бы в обратном отношении квадратов расстояний) уже надвигалось само собой на русское войско. Кутузов хотел атаковать на другой день, и вся армия хотела этого. Но для того чтобы атаковать, недостаточно желания сделать это; нужно, чтоб была возможность это сделать, а возможности этой не было. Нельзя было не отступить на один переход, потом точно так же нельзя было не отступить на другой и на третий переход, и наконец 1 го сентября, – когда армия подошла к Москве, – несмотря на всю силу поднявшегося чувства в рядах войск, сила вещей требовала того, чтобы войска эти шли за Москву. И войска отступили ещо на один, на последний переход и отдали Москву неприятелю.
Для тех людей, которые привыкли думать, что планы войн и сражений составляются полководцами таким же образом, как каждый из нас, сидя в своем кабинете над картой, делает соображения о том, как и как бы он распорядился в таком то и таком то сражении, представляются вопросы, почему Кутузов при отступлении не поступил так то и так то, почему он не занял позиции прежде Филей, почему он не отступил сразу на Калужскую дорогу, оставил Москву, и т. д. Люди, привыкшие так думать, забывают или не знают тех неизбежных условий, в которых всегда происходит деятельность всякого главнокомандующего. Деятельность полководца не имеет ни малейшего подобия с тою деятельностью, которую мы воображаем себе, сидя свободно в кабинете, разбирая какую нибудь кампанию на карте с известным количеством войска, с той и с другой стороны, и в известной местности, и начиная наши соображения с какого нибудь известного момента. Главнокомандующий никогда не бывает в тех условиях начала какого нибудь события, в которых мы всегда рассматриваем событие. Главнокомандующий всегда находится в средине движущегося ряда событий, и так, что никогда, ни в какую минуту, он не бывает в состоянии обдумать все значение совершающегося события. Событие незаметно, мгновение за мгновением, вырезается в свое значение, и в каждый момент этого последовательного, непрерывного вырезывания события главнокомандующий находится в центре сложнейшей игры, интриг, забот, зависимости, власти, проектов, советов, угроз, обманов, находится постоянно в необходимости отвечать на бесчисленное количество предлагаемых ему, всегда противоречащих один другому, вопросов.