Диффузионное приближение УПИ в тканях

Поделись знанием:
Перейти к: навигация, поиск

Фотоны, которые мигрируют в биологических тканях могут быть описаны при помощи численного моделирования методом Монте Карло или аналитическим уравнением переноса излучения (УПИ). Однако, УПИ трудно решается без применения упрощений (приближений). Стандартным методом упрощения УПИ является диффузионное приближение. Общее решение уравнения диффузии для фотонов получается быстрее, но менее точно чем методом Монте Карло[1].





Определения

УПИ может математически моделировать перенос энергии фотонов внутри ткани. Поток энергии излучения через небольшую площадь элемента в поле излучения может быть охарактеризован энергетической яркостью:

<math>L(\vec{r},\hat{s},t) (\frac{W}{m^2 sr})</math>.

Она определяется как поток энергии приходящейся на единицу площади, на единицу пространственного угла, в единицу времени. Где <math>\vec{r}</math> обозначает радиус вектор,<math>\hat{s}</math> обозначает единичный вектор направления и <math>t</math> обозначает время. Другие важные физические величины основаны на определении энергетической яркости излучения.[1] Плотность светового потока или интенсивность:

<math>\Phi(\vec{r},t)=\int_{4\pi}L(\vec{r},\hat{s},t)d\Omega (\frac{W}{m^2})</math>

Световой поток (флюенс):

<math>F(\vec{r})=\int_{-\infty}^{+\infty}\Phi(\vec{r},t)dt (\frac{J}{m^2})</math>

Поток энергии: <math>\vec{J}(\vec{r},t)=\int_{4\pi}\hat{s}L(\vec{r},\hat{s},t)d\Omega (\frac{W}{m^2})</math>.

Это вектор, который, аналогично скорости светового потока, указывает направление потока энергии.

Уравнение переноса излучения

УПИ это дифференциальное уравнение описывающее яркость излучения <math>L(\vec{r},\hat{s},t)</math>. Это уравнение можно получить с помощью закона сохранения энергии. УПИ утверждает, что луч света теряет энергию через дивергенцию и затухание (включая поглощение и рассеяние луча света) и получает энергию от источников света в среде и рассеяния по направлению к лучу. Когерентностью, поляризацией и нелинейностью можно пренебречь. Оптические свойства, такие как показатель преломления <math>n</math>, коэффициент поглощения µa, коэффициент рассеяния µμs, параметр анизотропия рассеяния <math>g</math> считаются независимыми от времени, но могут меняться в пространстве. Предполагается, что рассеяние должно быть упругим. УПИ (уравнение Больцмана) запишется в виде:

<math>\frac{\partial L(\vec{r},\hat{s},t)/c}{\partial t} = -\hat{s}\cdot \nabla L(\vec{r},\hat{s},t)-\mu_tL(\vec{r},\hat{s},t)+\mu_s\int_{4\pi}L(\vec{r},\hat{s}',t)P(\hat{s}'\cdot\hat{s})d\Omega' + S(\vec{r},\hat{s},t)</math>
  • <math>c</math>- это скорость света в ткани, определённая с учётом показателя преломления.
  • μt<math>=</math>μas -коэффициентом экстинкции.
  • <math>P(\hat{s}',\hat{s})</math> — фазовая функция, представляющая вероятность рассеяния света в направлении <math>\hat{s}'</math> в пространственный угол <math>d\Omega</math> вокруг <math>\hat{s}</math>. В большинстве случаев, фазовая функция зависит только от угла между направлением рассеяния <math>\hat{s}'</math> и направления падения света <math>\hat{s}</math>, то есть<math>P(\hat{s}',\hat{s})=P(\hat{s}'\cdot\hat{s})</math>.
  • Параметр анизотропии рассеяния может быть выражена как <math>g=\int_{4\pi}(\hat{s}'\cdot\hat{s})P(\hat{s}'\cdot\hat{s})d\Omega</math>.
  • <math>S(\vec{r},\hat{s},t)</math> — описывает интенсивность источника света.

Диффузионная теория

Предположения

В УПИ, шесть разных независимых переменных определяются энергетической яркостью любой пространственно-временной точки (<math>x</math>,<math>y</math> и <math>z</math> от <math>\vec{r}</math>, полярный угол <math>\theta</math> и угол перехода <math>\phi</math> от <math>\hat{s}</math> и <math>t</math>). Выдвинув соответствующие гипотезы о поведении фотонов в рассеивающей среде, можно сделать вывод о том, что число независимых переменных может уменьшаться. Эти предположения приводят к диффузионной теории (и к диффузионному уравнению) для миграции фотонов. Две гипотезы позволяют применять теории диффузии в УПИ:

  • Относительно событий рассеяния, существует очень мало событий поглощения. Кроме того, после многочисленных случаев рассеяния, несколько случаев поглощения будут происходить, и энергетическая яркость станет практически изотропной. Эту гипотезу иногда называют направленное расширение.
  • Вначале, время существенного изменения плотности тока значительно больше, чем время пересечения транспортной длины свободного пробега. Таким образом, относительное изменение плотности тока на транспортной длине свободного пробега значительно меньше единицы. Это свойство иногда называют временным уширением.

Следует отметить, что обе гипотезы верны только при большом значении коэффициента отражения поверхности (преимущественно рассеяние) в среде.

УПИ в диффузном приближении

Энергетическую яркость можно разложить в ряд линейно независимых сферических гармоник <math>Y</math>n, m. В диффузионной теории, энергетическая яркость принимается чаще всего за изотропную, поэтому используется только изотропная составляющая и анизотропная составляющая первого порядка<math>L(\vec{r},\hat{s},t) \approx\ \sum_{n=0}^{1} \sum_{m=-n}^{n}L_{n,m}(\vec{r},t)Y_{n,m}(\hat{s})</math> где <math>L</math>n, m коэффициент разложения. Энергетическая яркость представляется 4 составляющими, одна для n = 0 (изотропная составляющая) и 3 составляющие для n = 1 (анизотропная составляющая). Используя свойства сферических гармоник, определение плотности светового потока <math>\Phi(\vec{r},t)</math> и определение плотности тока <math>\vec{J}(\vec{r},t)</math> изотропные и анизотропные составляющие могут бы выражены следующим образом:

  • <math>L_{0,0}(\vec{r},t)Y_{0,0}(\hat{s})=\frac{\Phi(\vec{r},t)}{4\pi}</math>
  • <math>\sum_{m=-1}^{1}L_{1,m}(\vec{r},t)Y_{1,m}(\hat{s})=\frac{3}{4\pi}\vec{J}(\vec{r},t)\cdot \hat{s}</math>

Следовательно, энергетическую яркость можно аппроксимировать, так:[1]

<math>L(\vec{r},\hat{s},t)=\frac{1}{4\pi}\Phi(\vec{r},t)+\frac{3}{4\pi}\vec{J}(\vec{r},t)\cdot \hat{s}</math>

Используя это выражение для энергетической яркости, УПИ можно записать в скалярной и векторной форме следующим образом(В УПИ интегрирование слагаемого, которое описывает рассеяние, осуществляется в полном пространственном угле <math>4\pi</math> solid angle. УПИ в векторной форме умножается на направление <math>\hat{s}</math> до его оценки.)

<math> \frac{\partial \Phi(\vec{r},t)}{c\partial t} + \mu_a\Phi(\vec{r},t) + \nabla \cdot \vec{J}(\vec{r},t) = S(\vec{r},t)</math>

<math> \frac{\partial \vec{J}(\vec{r},t)}{c\partial t} + (\mu_a+\mu_s')\vec{J}(\vec{r},t) + \frac{1}{3}\nabla \Phi(\vec{r},t) = 0</math>

В УПИ интегрирование слагаемого, которое описывает рассеяние, осуществляется в полном телесном угле 4π. УПИ в векторной форме умножается на направление до его оценки. Диффузионное приближение может быть применено только в случаях, когда редуцированный коэффициент рассеяния намного больше, чем коэффициент поглощения; а также в случаях, когда размер минимальной толщины слоя сравним с несколькими транспортными длинами свободного пробега.

Уравнение диффузии

Заметим, что согласно второй гипотезе диффузионной теории относительное вклад изменения плотности тока <math>\vec{J}(\vec{r},t)</math> вдоль одной транспортной длины свободного пробега незначителен. При векторном представлении диффузионной теории УПИ сводится к закону Фика <math>\vec{J}(\vec{r},t)=\frac{-\nabla \Phi(\vec{r},t)}{3(\mu_a+\mu_s')}</math>, он определяет плотность потока в терминах градиента скорости переноса частиц. Подстановка закон Фика в скалярное уравнение УПИ даёт уравнение диффузии: [1]

<math> \frac{\partial \Phi(\vec{r},t)}{c\partial t} + \mu_a\Phi(\vec{r},t) - \nabla \cdot[D\nabla\Phi(\vec{r},t)] = S(\vec{r},t)</math>

<math>D=\frac{1}{3(\mu_a+\mu_s')}</math> — коэффициент диффузии; μ's<math>=(1-g)</math>μs — редуцированный коэффициент. Заметим, что в уравнении диффузии нет явной зависимости от коэффициента рассеяния. Вместо этого, только редуцированный коэффициент рассеяния появляется в выражении для <math>D</math>. Из этого следует, что диффузия не зависит от параметра анизотропии, g, рассеивающей среды, если редуцированный коэффициент рассеяния, μ's, остается постоянным.[1]

Решение уравнения диффузии

Для различных границ (например, слоев ткани) и расположений источников света, уравнение диффузии можно решить путём применения соответствующих граничных условий и определения характеристик источника <math>S(\vec{r},t)</math>.

Точечные источники в бесконечных однородных средах

В этом разделе представлено решение уравнения диффузии в простом случае импульсного точечного источника для однородной бесконечной среды. Характеристика источника излучения в уравнении диффузии выглядит так: <math>S(\vec{r},t, \vec{r'},t')=\delta(\vec{r}-\vec{r'})\delta(t-t')</math>, где <math>\vec{r}</math>, координата точки, в которой измеряется плотность светового потока, <math>\vec{r'}</math> координата источника. Пик импульса определяется временем <math>t'</math>. Для определения плотности светового потока, уравнение диффузии решается таким образом:

<math>\Phi(\vec{r},t;\vec{r'},t)=\frac{c}{[4\pi Dc(t-t')]^{3/2}}\exp\left[-\frac{\mid \vec{r}-\vec{r'} \mid ^2}{4Dc(t-t')}\right]\exp[-\mu_ac(t-t')]</math>

Множитель <math>\exp\left[-\mu_ac(t-t')\right]</math> описывает экспоненциальное затухание в плотности светового потока за счет поглощения в соответствии с законом Бугера-Ламберта-Бера. Остальные сомножители представляют расширение источника из-за рассеяния. С учетом изложенного решения, произвольный источник может быть охарактеризован как суперпозиция коротких импульсных точечных источников. Убирая зависимость по времени из уравнения диффузии получаем независящее от времени решение для точечного источника

<math>S(\vec{r})=\delta(\vec{r})</math>:

<math>\Phi(\vec{r})=\frac{1}{4\pi Dr}\exp(-\mu_{eff}r)</math>

<math>\mu_{\mathrm{eff}}=\sqrt{\frac{\mu_a}{D}}</math> эффективный коэффициент поглощения, который показывает скорость затухания плотности светового потока в пространстве.

Граничные условия

Плотность светового потока на границе. Применение граничных условий позволяет использовать уравнения диффузии для решения задач распространения света в средах ограниченного размера (где необходимо учитывать границу между биообъектом и окружающей средой). Чтобы решения задач на границе, нужно понять, что происходит, когда фотоны в среде достигают её границы (то есть поверхности). Направленное внутрь среды и интегрированное по направлению излучение на границе равно интегрированному по направлению излучению на границе направленному из среды и умноженному на коэффициент отражения <math>R_F</math>:

<math>\int_{\hat{s}\cdot \hat{n}<0}L(\vec{r},\hat{s},t)\hat{s}\cdot \hat{n} d\Omega=\int_{\hat{s}\cdot \hat{n}>0}R_F(\hat{s}\cdot \hat{n})L(\vec{r},\hat{s},t)\hat{s}\cdot \hat{n}d\Omega</math>

где <math>\hat{n}</math> нормаль к границе, направленная наружу. Диффузионное приближение дает выражение для излучения <math>L</math> с точки зрения плотности светового потока <math>\Phi</math> и плотность тока <math>\vec{J}</math>.

После подстановки, получаем оценку для вышеприведённых интегралов:

<math>\frac{\Phi(\vec{r},t)}{4}+\vec{J}(\vec{r},t)\cdot \frac{\hat{n}}{2}=R_{\Phi}\frac{\Phi(\vec{r},t)}{4}-R_{J}\vec{J}(\vec{r},t)\cdot \frac{\hat{n}}{2}</math>
  • <math>R_{\Phi}=\int_{0}^{\pi/2}2\sin \theta \cos \theta R_F(\cos \theta)d\theta</math>
  • <math>R_{J}=\int_{0}^{\pi/2}3\sin \theta (\cos \theta)^2 R_F(\cos \theta)d\theta</math>

Делаем подстановку, используя закон Фика (<math>\vec{J}(\vec{r},t)=-D\nabla \Phi(\vec{r},t)</math>), на расстоянии от границы, z = 0, получим:

<math>\Phi(\vec{r},t)=A_z\frac{\partial \Phi(\vec{r},t)}{\partial z}</math>
  • <math>A_z=2D\frac{1+R_{eff}}{1-R_{eff}}</math>
  • <math>R_{\mathrm{eff}}=\frac{R_{\Phi}+R_{J}}{2-R_{\Phi}+R_J}</math>

См. также

Напишите отзыв о статье "Диффузионное приближение УПИ в тканях"

Литература

Примечания

  1. 1 2 3 4 5 LV Wang and HI Wu. Biomedical Optics. — Wiley, 2007. — ISBN 978-0-471-74304-0.
  2. 1 2 3 A.Yu. Potlov, S.G. Proskurin, S.V. Frolov,. [sfm.eventry.org/report/942 SFM’13 - Saratov Fall Meeting, 2013].

Ссылки

  • A.Yu. Potlov, S.G. Proskurin, S.V. Frolov,. [iopscience.iop.org/1063-7818/44/2/174 2014 Quantum Electron. 44 174].
  • S.G. Proskurin,. [iopscience.iop.org/1063-7818/41/5/A03 Quantum Electron. 41 402]. (2011)
  • A.Yu. Potlov, S.G. Proskurin, S.V. Frolov,. [sfm.eventry.org/report/942 SFM’13 - Saratov Fall Meeting, 2013].

Отрывок, характеризующий Диффузионное приближение УПИ в тканях

– Я очень рада, что вы пришли, – начала княжна Марья, не поднимая глаз и чувствуя, как быстро и сильно билось ее сердце. – Мне Дронушка сказал, что вас разорила война. Это наше общее горе, и я ничего не пожалею, чтобы помочь вам. Я сама еду, потому что уже опасно здесь и неприятель близко… потому что… Я вам отдаю все, мои друзья, и прошу вас взять все, весь хлеб наш, чтобы у вас не было нужды. А ежели вам сказали, что я отдаю вам хлеб с тем, чтобы вы остались здесь, то это неправда. Я, напротив, прошу вас уезжать со всем вашим имуществом в нашу подмосковную, и там я беру на себя и обещаю вам, что вы не будете нуждаться. Вам дадут и домы и хлеба. – Княжна остановилась. В толпе только слышались вздохи.
– Я не от себя делаю это, – продолжала княжна, – я это делаю именем покойного отца, который был вам хорошим барином, и за брата, и его сына.
Она опять остановилась. Никто не прерывал ее молчания.
– Горе наше общее, и будем делить всё пополам. Все, что мое, то ваше, – сказала она, оглядывая лица, стоявшие перед нею.
Все глаза смотрели на нее с одинаковым выражением, значения которого она не могла понять. Было ли это любопытство, преданность, благодарность, или испуг и недоверие, но выражение на всех лицах было одинаковое.
– Много довольны вашей милостью, только нам брать господский хлеб не приходится, – сказал голос сзади.
– Да отчего же? – сказала княжна.
Никто не ответил, и княжна Марья, оглядываясь по толпе, замечала, что теперь все глаза, с которыми она встречалась, тотчас же опускались.
– Отчего же вы не хотите? – спросила она опять.
Никто не отвечал.
Княжне Марье становилось тяжело от этого молчанья; она старалась уловить чей нибудь взгляд.
– Отчего вы не говорите? – обратилась княжна к старому старику, который, облокотившись на палку, стоял перед ней. – Скажи, ежели ты думаешь, что еще что нибудь нужно. Я все сделаю, – сказала она, уловив его взгляд. Но он, как бы рассердившись за это, опустил совсем голову и проговорил:
– Чего соглашаться то, не нужно нам хлеба.
– Что ж, нам все бросить то? Не согласны. Не согласны… Нет нашего согласия. Мы тебя жалеем, а нашего согласия нет. Поезжай сама, одна… – раздалось в толпе с разных сторон. И опять на всех лицах этой толпы показалось одно и то же выражение, и теперь это было уже наверное не выражение любопытства и благодарности, а выражение озлобленной решительности.
– Да вы не поняли, верно, – с грустной улыбкой сказала княжна Марья. – Отчего вы не хотите ехать? Я обещаю поселить вас, кормить. А здесь неприятель разорит вас…
Но голос ее заглушали голоса толпы.
– Нет нашего согласия, пускай разоряет! Не берем твоего хлеба, нет согласия нашего!
Княжна Марья старалась уловить опять чей нибудь взгляд из толпы, но ни один взгляд не был устремлен на нее; глаза, очевидно, избегали ее. Ей стало странно и неловко.
– Вишь, научила ловко, за ней в крепость иди! Дома разори да в кабалу и ступай. Как же! Я хлеб, мол, отдам! – слышались голоса в толпе.
Княжна Марья, опустив голову, вышла из круга и пошла в дом. Повторив Дрону приказание о том, чтобы завтра были лошади для отъезда, она ушла в свою комнату и осталась одна с своими мыслями.


Долго эту ночь княжна Марья сидела у открытого окна в своей комнате, прислушиваясь к звукам говора мужиков, доносившегося с деревни, но она не думала о них. Она чувствовала, что, сколько бы она ни думала о них, она не могла бы понять их. Она думала все об одном – о своем горе, которое теперь, после перерыва, произведенного заботами о настоящем, уже сделалось для нее прошедшим. Она теперь уже могла вспоминать, могла плакать и могла молиться. С заходом солнца ветер затих. Ночь была тихая и свежая. В двенадцатом часу голоса стали затихать, пропел петух, из за лип стала выходить полная луна, поднялся свежий, белый туман роса, и над деревней и над домом воцарилась тишина.
Одна за другой представлялись ей картины близкого прошедшего – болезни и последних минут отца. И с грустной радостью она теперь останавливалась на этих образах, отгоняя от себя с ужасом только одно последнее представление его смерти, которое – она чувствовала – она была не в силах созерцать даже в своем воображении в этот тихий и таинственный час ночи. И картины эти представлялись ей с такой ясностью и с такими подробностями, что они казались ей то действительностью, то прошедшим, то будущим.
То ей живо представлялась та минута, когда с ним сделался удар и его из сада в Лысых Горах волокли под руки и он бормотал что то бессильным языком, дергал седыми бровями и беспокойно и робко смотрел на нее.
«Он и тогда хотел сказать мне то, что он сказал мне в день своей смерти, – думала она. – Он всегда думал то, что он сказал мне». И вот ей со всеми подробностями вспомнилась та ночь в Лысых Горах накануне сделавшегося с ним удара, когда княжна Марья, предчувствуя беду, против его воли осталась с ним. Она не спала и ночью на цыпочках сошла вниз и, подойдя к двери в цветочную, в которой в эту ночь ночевал ее отец, прислушалась к его голосу. Он измученным, усталым голосом говорил что то с Тихоном. Ему, видно, хотелось поговорить. «И отчего он не позвал меня? Отчего он не позволил быть мне тут на месте Тихона? – думала тогда и теперь княжна Марья. – Уж он не выскажет никогда никому теперь всего того, что было в его душе. Уж никогда не вернется для него и для меня эта минута, когда бы он говорил все, что ему хотелось высказать, а я, а не Тихон, слушала бы и понимала его. Отчего я не вошла тогда в комнату? – думала она. – Может быть, он тогда же бы сказал мне то, что он сказал в день смерти. Он и тогда в разговоре с Тихоном два раза спросил про меня. Ему хотелось меня видеть, а я стояла тут, за дверью. Ему было грустно, тяжело говорить с Тихоном, который не понимал его. Помню, как он заговорил с ним про Лизу, как живую, – он забыл, что она умерла, и Тихон напомнил ему, что ее уже нет, и он закричал: „Дурак“. Ему тяжело было. Я слышала из за двери, как он, кряхтя, лег на кровать и громко прокричал: „Бог мой!Отчего я не взошла тогда? Что ж бы он сделал мне? Что бы я потеряла? А может быть, тогда же он утешился бы, он сказал бы мне это слово“. И княжна Марья вслух произнесла то ласковое слово, которое он сказал ей в день смерти. «Ду ше нь ка! – повторила княжна Марья это слово и зарыдала облегчающими душу слезами. Она видела теперь перед собою его лицо. И не то лицо, которое она знала с тех пор, как себя помнила, и которое она всегда видела издалека; а то лицо – робкое и слабое, которое она в последний день, пригибаясь к его рту, чтобы слышать то, что он говорил, в первый раз рассмотрела вблизи со всеми его морщинами и подробностями.
«Душенька», – повторила она.
«Что он думал, когда сказал это слово? Что он думает теперь? – вдруг пришел ей вопрос, и в ответ на это она увидала его перед собой с тем выражением лица, которое у него было в гробу на обвязанном белым платком лице. И тот ужас, который охватил ее тогда, когда она прикоснулась к нему и убедилась, что это не только не был он, но что то таинственное и отталкивающее, охватил ее и теперь. Она хотела думать о другом, хотела молиться и ничего не могла сделать. Она большими открытыми глазами смотрела на лунный свет и тени, всякую секунду ждала увидеть его мертвое лицо и чувствовала, что тишина, стоявшая над домом и в доме, заковывала ее.
– Дуняша! – прошептала она. – Дуняша! – вскрикнула она диким голосом и, вырвавшись из тишины, побежала к девичьей, навстречу бегущим к ней няне и девушкам.


17 го августа Ростов и Ильин, сопутствуемые только что вернувшимся из плена Лаврушкой и вестовым гусаром, из своей стоянки Янково, в пятнадцати верстах от Богучарова, поехали кататься верхами – попробовать новую, купленную Ильиным лошадь и разузнать, нет ли в деревнях сена.
Богучарово находилось последние три дня между двумя неприятельскими армиями, так что так же легко мог зайти туда русский арьергард, как и французский авангард, и потому Ростов, как заботливый эскадронный командир, желал прежде французов воспользоваться тем провиантом, который оставался в Богучарове.
Ростов и Ильин были в самом веселом расположении духа. Дорогой в Богучарово, в княжеское именье с усадьбой, где они надеялись найти большую дворню и хорошеньких девушек, они то расспрашивали Лаврушку о Наполеоне и смеялись его рассказам, то перегонялись, пробуя лошадь Ильина.
Ростов и не знал и не думал, что эта деревня, в которую он ехал, была именье того самого Болконского, который был женихом его сестры.
Ростов с Ильиным в последний раз выпустили на перегонку лошадей в изволок перед Богучаровым, и Ростов, перегнавший Ильина, первый вскакал в улицу деревни Богучарова.
– Ты вперед взял, – говорил раскрасневшийся Ильин.
– Да, всё вперед, и на лугу вперед, и тут, – отвечал Ростов, поглаживая рукой своего взмылившегося донца.
– А я на французской, ваше сиятельство, – сзади говорил Лаврушка, называя французской свою упряжную клячу, – перегнал бы, да только срамить не хотел.
Они шагом подъехали к амбару, у которого стояла большая толпа мужиков.
Некоторые мужики сняли шапки, некоторые, не снимая шапок, смотрели на подъехавших. Два старые длинные мужика, с сморщенными лицами и редкими бородами, вышли из кабака и с улыбками, качаясь и распевая какую то нескладную песню, подошли к офицерам.
– Молодцы! – сказал, смеясь, Ростов. – Что, сено есть?
– И одинакие какие… – сказал Ильин.
– Развесе…oo…ооо…лая бесе… бесе… – распевали мужики с счастливыми улыбками.
Один мужик вышел из толпы и подошел к Ростову.
– Вы из каких будете? – спросил он.
– Французы, – отвечал, смеючись, Ильин. – Вот и Наполеон сам, – сказал он, указывая на Лаврушку.
– Стало быть, русские будете? – переспросил мужик.
– А много вашей силы тут? – спросил другой небольшой мужик, подходя к ним.
– Много, много, – отвечал Ростов. – Да вы что ж собрались тут? – прибавил он. – Праздник, что ль?
– Старички собрались, по мирскому делу, – отвечал мужик, отходя от него.
В это время по дороге от барского дома показались две женщины и человек в белой шляпе, шедшие к офицерам.
– В розовом моя, чур не отбивать! – сказал Ильин, заметив решительно подвигавшуюся к нему Дуняшу.
– Наша будет! – подмигнув, сказал Ильину Лаврушка.
– Что, моя красавица, нужно? – сказал Ильин, улыбаясь.
– Княжна приказали узнать, какого вы полка и ваши фамилии?
– Это граф Ростов, эскадронный командир, а я ваш покорный слуга.
– Бе…се…е…ду…шка! – распевал пьяный мужик, счастливо улыбаясь и глядя на Ильина, разговаривающего с девушкой. Вслед за Дуняшей подошел к Ростову Алпатыч, еще издали сняв свою шляпу.
– Осмелюсь обеспокоить, ваше благородие, – сказал он с почтительностью, но с относительным пренебрежением к юности этого офицера и заложив руку за пазуху. – Моя госпожа, дочь скончавшегося сего пятнадцатого числа генерал аншефа князя Николая Андреевича Болконского, находясь в затруднении по случаю невежества этих лиц, – он указал на мужиков, – просит вас пожаловать… не угодно ли будет, – с грустной улыбкой сказал Алпатыч, – отъехать несколько, а то не так удобно при… – Алпатыч указал на двух мужиков, которые сзади так и носились около него, как слепни около лошади.