ЭНИАК

Поделись знанием:
Перейти к: навигация, поиск

ЭНИАК (англ. ENIAC, сокр. от Electronic Numerical Integrator and Computer[1] — Электронный числовой интегратор и вычислитель) — первый электронный цифровой вычислитель общего назначения, который можно было перепрограммировать для решения широкого спектра задач.





История создания

Архитектуру компьютера начали разрабатывать в 1943 году Джон Преспер Эккерт (англ.) и Джон Уильям Мокли, учёные из Пенсильванского университета (Электротехническая школа Мура) по заказу Лаборатории баллистических исследований (англ.) Армии США для расчётов таблиц стрельбы. В отличие от созданного в 1941 году немецким инженером Конрадом Цузе комплекса Z3, использовавшего механические реле, в ЭНИАКе в качестве основы элементной базы применялись вакуумные лампы.

Расчёты таблиц стрельбы в то время проводились вручную на настольных арифмометрах. Эту работу в Лаборатории выполняли особые клерки — «вычислители» — в основном женщины. Таблицы стрельбы рассчитывались для каждого отдельного типа снаряда и орудия перед отправкой на фронт, и при различных комбинациях множества параметров (температура воздуха, скорость ветра, плотность почвы под орудием, возвышение ствола, скорость снаряда, температура ствола орудия) требовался кропотливый расчёт около 3000 траекторий полёта снаряда. Расчёт каждой траектории требовал примерно 1000 операций. Один вычислитель был способен выполнить этот расчет за 16 дней, а на вычисление всей таблицы потребовалось бы 4 года. Без этих таблиц артиллеристам просто невозможно было точно попасть в цель. В условиях Второй Мировой войны на фронт в Европу отправлялось всё больше и больше орудий и снарядов к ним, в 1943 году союзные войска высадились в Африке, где условия стрельбы были совершенно новыми и требовали новых таблиц, а Лаборатория не справлялась со своевременным их расчётом.

В Институте Мура имелся один из немногих «дифференциальных анализаторов» — механический вычислитель, к помощи которого прибегала Лаборатория для выполнения хотя бы части расчётов. В этом институте Мокли работал преподавателем, а Экерт — был простым студентом с незаурядными способностями инженера. В августе 1942 года Мокли написал 7-страничный документ «The Use of High-Speed Vacuum Tube Devices for Calculation», в котором предлагал Институту построить электронную вычислительную машину основанную на вакуумных лампах. Руководство Института работу не оценило и сдало документ в архив, где он вообще был утерян.

Сотрудничество Института Мура с Баллистической Лабораторией по вычислению таблиц стрельбы осуществлялось через капитана Германа Голдстайна, который до поступления на службу в армию работал профессором математики в Университете штата Мичиган. Лишь в начале 1943 года один из работников Института в случайной беседе сообщил Голдстайну об идее электронного вычислителя, с которой носился Мокли. Использование электронной вычислительной машины позволило бы Лаборатории сократить время расчёта с нескольких месяцев до нескольких часов. Голдстайн встретился с Мокли и предложил ему обратиться с заявкой в Лабораторию на выделение средств для постройки задуманной машины. Мокли по памяти восстановил утерянный 7-страничный документ с описанием проекта.

9 апреля 1943 года проект был представлен Баллистической Лаборатории на заседании Комиссии по науке. В проекте машина называлась «электронный дифф. анализатор» (electronic diff. analyzer). Это была уловка, чтобы новизна проекта не вызвала отторжение у военных. Все они были уже знакомы с дифференциальным анализатором, и проект в их представлении просто предлагал сделать его не механическим, а электрическим. Проект обещал, что построенный компьютер будет вычислять одну траекторию за 5 минут.

После короткой презентации научный консультант комиссии Освальд Веблен одобрил идею, и деньги (61.700 долларов США на первые 6 месяцев исследовательских работ) были выделены. В контракте под номером W-670-ORD-4926, заключенном 5 июня 1943 года, машина называлась «Electronic Numerical Integrator» («Электронный числовой интегратор»), позднее к названию было добавлено «and Computer» («и компьютер»), в результате чего получилась знаменитая аббревиатура ENIAC. Куратором проекта «Project PX» со стороны Армии США выступил опять-таки Герман Голдстайн.

К февралю 1944 года были готовы все схемы и чертежи будущего компьютера, и группа инженеров под руководством Экерта и Мокли приступила к воплощению замысла в «железо». В группу вошли также:

  • Роберт Шоу (Robert F. Shaw) (функциональные таблицы)
  • Джеффри Чуан Чу (Jeffrey Chuan Chu) (модуль деления/извлечения квадратного корня)
  • Томас Кайт Шарплес (Thomas Kite Sharpless) (главный программист)
  • Артур Бёркс (Arthur Burks) (модуль умножения)
  • Гарри Хаски (Harry Huskey) (модуль чтения вывод данных)
  • Джек Дэви (Jack Davis) (аккумуляторы)
  • Джон фон Нейман — присоединился к проекту в сентябре 1944 года в качестве научного консультанта. На основе анализа недостатков ЭНИАКа внёс существенные предложения по созданию новой более совершенной машины — EDVAC

В середине июля 1944 года Мокли и Эккерт собрали два первых «аккумулятора» — модули, которые использовались для сложения чисел. Соединив их вместе, они перемножили два числа 5 и 1000 и получили верный результат. Этот результат был продемонстрирован руководству Института и Баллистической Лаборатории и доказал всем скептикам, что электронный компьютер действительно может быть построен.

Компьютер был полностью готов лишь осенью 1945 года. Так как война к тому времени уже была закончена, и острой необходимости в быстром расчёте таблиц стрельбы уже не было, военное ведомство США решило использовать ENIAC в расчётах по разработке термоядерного оружия.

Будучи сверхсекретным проектом Армии США, компьютер был представлен публике и прессе лишь много месяцев спустя после окончания войны — 14 февраля 1946 года. Через несколько месяцев — 9 ноября 1946 года — ENIAC был разобран и перевезён из Университета Пенсильвании в г. Абердин в Лабораторию баллистических исследований Армии США, где с 29 июля 1947 года он успешно проработал ещё много лет и был окончательно выключен 2 октября 1955 года в 23:45[2].

В Баллистической Лаборатории на ENIAC выполнялись расчеты по проблеме термоядерного оружия, прогнозам погоды в СССР для предсказания направления выпадения ядерных осадков на случай ядерной войны, инженерные расчёты, и конечно же таблиц стрельбы, включая таблицы стрельбы ядерными боеприпасами.

Первыми программистами ЭНИАКа стали шесть девушек[3]:

Использование

В качестве испытания ЭНИАКу первой была поставлена задача по математическому моделированию термоядерного взрыва супер-бомбы по гипотезе Улама-Теллера. Фон Нейман, который одновременно работал консультантом и в Лос-Аламосской лаборатории и в Институте Мура, предложил группе Теллера использовать ЭНИАК для расчётов ещё в начале 1945 года. Решение проблемы термоядерного оружия требовало такого огромного объёма вычислений, что справиться с ним не могли никакие электромеханические калькуляторы, имевшиеся в распоряжении Лаборатории. В августе 1945 физики Лос-Аламосской лаборатории Николас Метрополис и Стенли Френкель (англ.) посетили институт Мура, и Герман Голдстайн вместе со своей женой Адель, которая работала в команде программистом и была автором первого руководства по работе с ЭНИАКом[4], познакомили их с техникой программирования ЭНИАКа. После этого они вернулись в Лос-Аламос, где стали работать над программой под названием «The Los Alamos Problem».

Производительность ЭНИАКа была слишком мала для полноценного моделирования, поэтому Метрополис и Френкель сильно упростили уравнение, игнорируя многие физические эффекты и стараясь хотя бы приблизительно рассчитать лишь первую фазу взрыва дейтерий-тритиевой смеси в одномерном пространстве. Детали и результаты выполненных в ноябре — декабре 1945 года расчётов до сих пор засекречены. Перед ЭНИАКом была поставлена задача решить сложнейшее дифференциальное уравнение, для ввода исходных данных к которому понадобилось около миллиона перфокарт. Вводная задача была разбита на несколько частей, чтобы данные могли поместиться в память компьютера. Промежуточные результаты выводились на перфокарты и после перекоммутации снова заводились в машину. В апреле 1946 года группа Теллера обсудила результаты расчётов и сделала вывод, что они достаточно обнадёживающе (хотя и очень приблизительно) доказывают возможность создания водородной бомбы.

На обсуждении результатов расчёта присутствовал Станислав Улам. Поражённый скоростью работы ЭНИАКа, он предложил сделать расчёты по термоядерному взрыву методом Монте-Карло. В 1947 году на ЭНИАКе было выполнено 9 расчётов этим методом с различными исходными параметрами. После этого метод Монте-Карло стал использоваться во всех вычислениях, связанных с разработкой термоядерного оружия.

Британский физик Дуглас Хартри в апреле и июле 1946 года решал на ЭНИАКе проблему обтекания воздухом крыла самолета, движущегося быстрее скорости звука. ЭНИАК выдал ему результаты расчётов с точностью до седьмого знака. Об этом опыте работы Хартри написал в статье в сентябрьском выпуске журнала Nature за 1946 год[5].

В 1949 году фон Нейман использовал ЭНИАК для расчёта числа π и e с точностью до 2000 знаков после запятой. Фон Неймана интересовало статистическое распределение цифр в этих числах. Предполагалось, что цифры в этих числах появляются с равной вероятностью, а значит — компьютеры могут генерировать действительно случайные числа, которые можно использовать как вводные параметры для вычислений методом Монте-Карло. Вычисления для числа e были выполнены в июле 1949 года, а для числа π — за один день в начале сентября. Результаты показали, что «цифры в числе π идут в случайном порядке, а вот с числом e всё обстояло значительно хуже»[6].

На ЭНИАКе весной 1950 года был произведён первый успешный численный прогноз погоды командой американских метеорологов Жюлем Чарни (англ.), Филипом Томсоном, Ларри Гейтсом, норвежцем Рагнаром Фьюртофтом (англ.) и математиком Джоном фон Нейманом. Они использовали упрощённые модели атмосферных потоков на основе уравнения вихря скорости для баротропного газа. Это упрощение понизило вычислительную сложность задачи и позволило произвести расчёты с использованием доступных в то время вычислительных мощностей[7]. Расчёты велись начиная с 5 марта 1950 года в течение 5 недель, пять дней в неделю в три 8-часовые смены. Ещё несколько месяцев ушло на анализ и оценку результатов. Описание расчётов и анализ результатов были представлены в работе «Numerical Integration of Barotropic Vorticity Equation»[8], опубликованной 1 ноября 1950 года в журнале Tellus. В статье упоминается, что прогноз погоды на следующие 24 часа на ЭНИАКе был выполнен за 24 часа, то есть прогноз едва успевал за реальностью. Большая часть времени уходила на распечатку перфокарт и их сортировку. Во время расчётов приходилось на ходу вносить изменения в программу и ждать замены перегоревших ламп. При должной оптимизации работы ЭНИАКа, говорилось в работе, расчёт можно было бы выполнить за 12 часов, а при использовании более совершенных машин — за 30 минут. Для прогноза использовались карты погоды над территорией США и Канады за 5, 30, 31 января и 13 февраля 1949 года. После расчётов прогнозные карты сравнивались с реальными для оценки качества прогноза[9].

Характеристики, архитектура и программирование

На создание ENIAC ушло 200 000 человеко-часов и 486 804,22 доллара США. Всего комплекс включал в себя 17 468 ламп 16 различных типов, 7200 кремниевых диодов, 1500 реле, 70 000 резисторов и 10 000 конденсаторов.

  • Вес — 27 тонн.
  • Объём памяти — 20 число-слов.
  • Потребляемая мощность — 174 кВт.
  • Вычислительная мощность — 357 операций умножения или 5000 операций сложения в секунду.
  • Тактовая частота — 100 кГц, то есть один импульс каждые 10 микросекунд. Основной вычислительный такт состоял из 20 импульсов и занимал 200 микросекунд. Сложение выполнялось за 1 такт, умножение — за 14 тактов. Умножение заменялось многократным сложением, так что 1 умножение равнялось 14 операциям сложения и выполнялось, соответственно, за 2800 микросекунд.
  • Устройство ввода-вывода данных — табулятор перфокарт компании IBM: 125 карт/минуту на ввод, 100 карт/минуту на вывод[10].

Вычисления производились в десятичной системе, после тщательного анализа ей было отдано предпочтение перед двоичной системой. Компьютер оперировал числами максимальной длиной в 20 разрядов[11].

Многие специалисты Института скептически предсказывали, что при таком количестве ламп в системе компьютер просто не сможет работать сколь-нибудь продолжительное время, чтобы выдать стоящий результат — слишком много точек отказа. Выход из строя одной лампы, одного конденсатора или резистора означал остановку работы всей машины, всего существовало 1,8 миллиарда различных вариантов отказа в каждую секунду[12][13]. До этого человечество не создавало ни один прибор такой сложности и с таким требованием к надёжности. Для того, чтобы вакуумные лампы реже перегорали, Экерт придумал подавать на них минимальное напряжение — 5.7 вольт вместо номинальных 6.3 вольта[14], а после произведения вычислений ЭНИАК продолжал работать, поддерживая лампы в «тёплом» состоянии, чтобы перепад температуры при охлаждении и накаливании не приводил к их перегоранию. За неделю сгорало примерно 2-3 лампы[14], а среднее время работы лампы составляло 2500 часов[15]. Особо высокие требования предъявлялись к отбору радиодеталей и качеству монтажа и пайки. Так инженеры добились того, чтобы ЭНИАК работал минимум 20 часов между поломками — не так много по нынешним меркам, но за каждые 20 часов работы ЭНИАК выполнял месячный объём работы механических вычислителей.

До 1948 года для перепрограммирования ENIAC нужно было перекоммутировать его заново, в то время как Z3 умел считывать программы с перфорированной ленты. Программирование задачи на ЭНИАКе могло занимать до двух дней, а её решение — несколько минут. При перекоммутировании ЭНИАК превращался как бы в новый специализированный компьютер для решения специфической задачи. Ещё на этапе конструирования ЭНИАКа Экерт и Мокли понимали недостатки своего детища, но на этапе проектирования они не считались критическими, поскольку компьютер изначально предназначался для выполнения однотипных баллистических расчётов[16].

В январе 1944 года Экерт сделал первый набросок второго компьютера с более совершенным дизайном, в котором программа хранилась в памяти компьютера, а не формировалась с помощью коммутаторов и перестановки блоков, как в ЭНИАКе. Летом 1944 года военный куратор проекта Герман Голдстайн случайно познакомился со знаменитым математиком фон Нейманом и привлёк его к работе над машиной. Фон Нейман внёс свой вклад в проект с точки зрения строгой теории. Так был создан теоретический и инженерный фундамент для следующей модели компьютера под названием EDVAC с хранимой в памяти программой. Контракт с Армией США на создание этой машины был подписан в апреле 1946 года.

Научная работа фон Неймана «Первый проект отчёта о EDVAC», обнародованная 30 июня 1945 года, послужила толчком к созданию вычислительных машин в США (EDVAC, BINAC, UNIVAC I) и в Англии (EDSAC). Из-за огромного научного авторитета идея о компьютере с программой, хранимой в памяти, приписывается фон Нейману («архитектура фон Неймана»), хотя приоритет на самом деле принадлежит Экерту, предложившему использовать память на ртутных акустических линиях задержки. Фон Нейман подключился к проекту позднее и просто придал инженерным решениям Мокли и Экерта академический научный смысл.

С 16 сентября 1948 года ENIAC превратился в компьютер с хранимой программой (весьма примитивный). По предложению фон Неймана высказанному в июне 1947 года[17] две функциональные таблицы были использованы для хранения всех команд ENIAСа, чтобы команды вызывались как подпрограммы во время исполнения кода. Компьютер стал работать несколько медленнее, но его программирование сильно упростилось. Старый метод перекоммутирования с тех пор больше не использовался[18].

В июле 1953 года к ЭНИАКу был подключен двоично-десятичный модуль памяти на магнитных сердечниках, увеличивший объём оперативной памяти компьютера с 20 до 120 число-слов.

Влияние

ЭНИАК нельзя было назвать совершенным компьютером. Машина создавалась в военное время в большой спешке с нуля при отсутствии какого-либо предыдущего опыта создания подобных устройств. ЭНИАК был построен в единственном экземпляре, и инженерные решения, реализованные в ЭНИАКЕ, не использовались в последующих конструкциях компьютеров. ЭНИАК скорей компьютер не первого, а «нулевого» поколения. Значение ЭНИАКа заключается просто в его существовании, которое доказало возможность построения полностью электронного компьютера, способного работать достаточно продолжительное время, чтобы оправдать затраты на его постройку и принести ощутимые результаты.

В марте 1946 года Экерт и Мокли из-за споров с Пенсильванским университетом о патентах на ЭНИАК и на EDVAC, над которым они в то время работали, решили покинуть институт Мура и начать частный бизнес в области построения компьютеров, создав компанию Electronic Control Company, которая позднее была переименована в Eckert–Mauchly Computer Corporation. В качестве «прощального подарка» и по просьбе Армии США они прочитали в институте серию лекций о конструировании компьютеров под общим названием «Теория и методы разработки электронных цифровых компьютеров», опираясь на свой опыт построения ENIAC и проектирования EDVAC. Эти лекции вошли в историю как «Лекции школы Мура». Лекции — по сути первые в истории человечества компьютерные курсы — читались летом 1946 года с 8 июля по 31 августа только для узкого круга специалистов США и Великобритании, работавших над той же проблемой в разных правительственных ведомствах и научных институтах, всего 28 человек. Лекции послужили отправной точкой к созданию в 40-х и 50-х годах успешных вычислительных систем CALDIC, SEAC, SWAC, ILLIAC, машина Института перспективных исследований и компьютер Whirlwind (англ.), использовавшийся ВВС США в первой в мире компьютерной системе ПВО SAGE.

Память о компьютере

  • Некоторые детали компьютера ENIAC выставлены в Национальном музее американской истории (англ.) в Вашингтоне[19].
  • В честь компьютера назван астероид (229777) ENIAC[20].
  • В 1995 году была создана кремниевая интегральная микросхема ENIAC-on-A-Chip размерами 7,44 мм × 5,29 мм, в которой с помощью 250 000 (в других источниках — 174 569[16]) транзисторов была реализована логика, аналогичная 30-тонному ЭНИАКу. ИС работала на частоте 20 МГц, то есть значительно быстрее, чем ЭНИАК[21].
  • Существует одноимённая мобильная игра под платформы iOS[22] и Android[23].

См. также

Напишите отзыв о статье "ЭНИАК"

Литература

  • Herman H. Goldstine. [books.google.co.jp/books?id=jCSpiVBH5W0C The Computer from Pascal to von Neumann]. — Princeton University Press, 1980. — 365 p. — ISBN 9780691023670. (англ.)
  • Nancy B. Stern. [books.google.co.jp/books?id=DY5QAAAAMAAJ From Eniac to UNIVAC: An Appraisal of the Eckert-Mauchy Computers]. — Digital Press, 1981. — 286 p. — ISBN 0932376142. (англ.)
  • William Aspray. [books.google.co.jp/books?id=c5uDQgAACAAJ John von Neumann and the Origins of Modern Computing]. — MIT Press, 1990. — 394 p. — ISBN 0262011212. (англ.)
  • Scott McCartney. [books.google.com/books?id=GxMIAQAAMAAJ ENIAC: The Triumphs and Tragedies of the World's First Computer]. — Berkley Books, 2001. — 262 p. — ISBN 9780425176443. (англ.)
  • Raúl Rojas, Ulf Hashagen. [books.google.com/books?id=nDWPW9uwZPAC The First Computers: History and Architectures]. — MIT Press, 2002. — 471 p. — ISBN 9780262681377. (англ.)
  • Kristine C. Harper. [books.google.co.jp/books?id=MFPFc_p7XBgC Weather by the Numbers: The Genesis of Modern Meteorology]. — MIT Press, 2008. — 320 p. — ISBN 9780262083782. (англ.)
  • Thomas Haigh, Mark Priestley, Crispin Rope. [books.google.co.jp/books?id=a-SejgEACAAJ ENIAC in Action: Making and Remaking the Modern Computer]. — The MIT Press, 2016. — 360 p. — ISBN 0262033984. (англ.)

Примечания

  1. ELECTRONIC COMPUTERS WITHIN THE ORDNANCE CORPS by Karl Kempf November 1961 [ftp.arl.army.mil/mike/comphist/61ordnance/app1.html Electronic Numerical Integrator and Computer]
  2. Goldstein, 1998, p. 234-235.
  3. Хейли Уильямс. [www.lifehacker.com.au/2015/11/invisible-women-the-six-human-computers-behind-the-eniac/ Invisible Women: The Six Human Computers Behind The ENIAC]  (англ.) на сайте lifehacker.com.au, 10 ноября 2015
  4. [ftp.arl.army.mil/mike/comphist/46eniac-report/index.html A REPORT ON THE ENIAC (Electronic Numerical Integrator and Computer) June 1, 1946]
  5. The Eniac, an Electronic Computing Machine // Nature (12 October 1946) vol. 158. — p.500—506 [www.nature.com/nature/journal/v158/n4015/pdf/158500a0.pdf]
  6. Nicholas Metropolis, George Reitwiesner, and John von Neumann, Statistical treatment of values of first 2000 decimal digits of e and of pi calculated on the ENIAC, Mathematical tables and other aids to Computations 4 (1950), no. 30, 109—112
  7. American Institute of Physics. [www.aip.org/history/sloan/gcm/ Atmospheric General Circulation Modeling.] 2008-01-13.
  8. Репринт работы [mathsci.ucd.ie/~plynch/eniac/CFvN-1950.pdf Numerical Integration of Barotropic Vorticity Equation] на сайте Университета Дублина
  9. Harper, 2008, p. 154.
  10. ELECTRONIC COMPUTERS WITHIN THE ORDNANCE CORPS by Karl Kempf November 1961 [ftp.arl.army.mil/mike/comphist/61ordnance/app1.html Техническая спецификация ЭНИАКа]
  11. Rojas, 2002, p. 130.
  12. [www.upenn.edu/almanac/v42/n18/eniac.html A Short History of the Second American Revolution]
  13. Goldstine, 1980, p. 155.
  14. 1 2 Goldstine, 1980, p. 145.
  15. Goldstine, 1980, p. 154.
  16. 1 2 Rojas, 2002, p. 177.
  17. Goldstine, 1980, p. 270.
  18. Goldstine, 1980, p. 233.
  19. [americanhistory.si.edu/collections/search/object/nmah_334742 ENIAC Accumulator #2]
  20. [ssd.jpl.nasa.gov/sbdb.cgi?sstr=229777 База данных JPL НАСА по малым телам Солнечной системы (229777)] (англ.)
  21. Jan Van Der Spiegel (1996-03). [www.upenn.edu/computing/printout/archive/v12/4/chip.html «ENIAC-on-a-Chip»]
  22. [itunes.apple.com/ru/app/eniac-logic-golovolomka-v/id1000199275?mt=8 Eniac Logic - Головоломка в стиле киберпанк в App Store]. App Store. Проверено 30 июня 2016.
  23. [play.google.com/store/apps/details?id=com.xrunico.el Приложения на Google Play – ЭНИАК ЛОГИКА]. play.google.com. Проверено 30 июня 2016.

Ссылки

  • ARTHUR W. BURKS. [archive.computerhistory.org/resources/text/Knuth_Don_X4100/PDF_index/k-8-pdf/k-8-r5367-1-ENIAC-circuits.pdf ELECTRONIC COMPUTING CIRCUITS OF THE ENIAC] (англ.) (PDF). — статья Артура Бёркса об устройстве ЭНИАКа. Проверено 10 декабря 2014.
  • [bitsavers.informatik.uni-stuttgart.de/pdf/univOfPennsylvania/eniac/ Документация на ЭНИАК] (англ.). — на сайте bitsavers.org. Проверено 10 декабря 2014.


Отрывок, характеризующий ЭНИАК

Ком снега невозможно растопить мгновенно. Существует известный предел времени, ранее которого никакие усилия тепла не могут растопить снега. Напротив, чем больше тепла, тем более крепнет остающийся снег.
Из русских военачальников никто, кроме Кутузова, не понимал этого. Когда определилось направление бегства французской армии по Смоленской дороге, тогда то, что предвидел Коновницын в ночь 11 го октября, начало сбываться. Все высшие чины армии хотели отличиться, отрезать, перехватить, полонить, опрокинуть французов, и все требовали наступления.
Кутузов один все силы свои (силы эти очень невелики у каждого главнокомандующего) употреблял на то, чтобы противодействовать наступлению.
Он не мог им сказать то, что мы говорим теперь: зачем сраженье, и загораживанье дороги, и потеря своих людей, и бесчеловечное добиванье несчастных? Зачем все это, когда от Москвы до Вязьмы без сражения растаяла одна треть этого войска? Но он говорил им, выводя из своей старческой мудрости то, что они могли бы понять, – он говорил им про золотой мост, и они смеялись над ним, клеветали его, и рвали, и метали, и куражились над убитым зверем.
Под Вязьмой Ермолов, Милорадович, Платов и другие, находясь в близости от французов, не могли воздержаться от желания отрезать и опрокинуть два французские корпуса. Кутузову, извещая его о своем намерении, они прислали в конверте, вместо донесения, лист белой бумаги.
И сколько ни старался Кутузов удержать войска, войска наши атаковали, стараясь загородить дорогу. Пехотные полки, как рассказывают, с музыкой и барабанным боем ходили в атаку и побили и потеряли тысячи людей.
Но отрезать – никого не отрезали и не опрокинули. И французское войско, стянувшись крепче от опасности, продолжало, равномерно тая, все тот же свой гибельный путь к Смоленску.



Бородинское сражение с последовавшими за ним занятием Москвы и бегством французов, без новых сражений, – есть одно из самых поучительных явлений истории.
Все историки согласны в том, что внешняя деятельность государств и народов, в их столкновениях между собой, выражается войнами; что непосредственно, вследствие больших или меньших успехов военных, увеличивается или уменьшается политическая сила государств и народов.
Как ни странны исторические описания того, как какой нибудь король или император, поссорившись с другим императором или королем, собрал войско, сразился с войском врага, одержал победу, убил три, пять, десять тысяч человек и вследствие того покорил государство и целый народ в несколько миллионов; как ни непонятно, почему поражение одной армии, одной сотой всех сил народа, заставило покориться народ, – все факты истории (насколько она нам известна) подтверждают справедливость того, что большие или меньшие успехи войска одного народа против войска другого народа суть причины или, по крайней мере, существенные признаки увеличения или уменьшения силы народов. Войско одержало победу, и тотчас же увеличились права победившего народа в ущерб побежденному. Войско понесло поражение, и тотчас же по степени поражения народ лишается прав, а при совершенном поражении своего войска совершенно покоряется.
Так было (по истории) с древнейших времен и до настоящего времени. Все войны Наполеона служат подтверждением этого правила. По степени поражения австрийских войск – Австрия лишается своих прав, и увеличиваются права и силы Франции. Победа французов под Иеной и Ауерштетом уничтожает самостоятельное существование Пруссии.
Но вдруг в 1812 м году французами одержана победа под Москвой, Москва взята, и вслед за тем, без новых сражений, не Россия перестала существовать, а перестала существовать шестисоттысячная армия, потом наполеоновская Франция. Натянуть факты на правила истории, сказать, что поле сражения в Бородине осталось за русскими, что после Москвы были сражения, уничтожившие армию Наполеона, – невозможно.
После Бородинской победы французов не было ни одного не только генерального, но сколько нибудь значительного сражения, и французская армия перестала существовать. Что это значит? Ежели бы это был пример из истории Китая, мы бы могли сказать, что это явление не историческое (лазейка историков, когда что не подходит под их мерку); ежели бы дело касалось столкновения непродолжительного, в котором участвовали бы малые количества войск, мы бы могли принять это явление за исключение; но событие это совершилось на глазах наших отцов, для которых решался вопрос жизни и смерти отечества, и война эта была величайшая из всех известных войн…
Период кампании 1812 года от Бородинского сражения до изгнания французов доказал, что выигранное сражение не только не есть причина завоевания, но даже и не постоянный признак завоевания; доказал, что сила, решающая участь народов, лежит не в завоевателях, даже на в армиях и сражениях, а в чем то другом.
Французские историки, описывая положение французского войска перед выходом из Москвы, утверждают, что все в Великой армии было в порядке, исключая кавалерии, артиллерии и обозов, да не было фуража для корма лошадей и рогатого скота. Этому бедствию не могло помочь ничто, потому что окрестные мужики жгли свое сено и не давали французам.
Выигранное сражение не принесло обычных результатов, потому что мужики Карп и Влас, которые после выступления французов приехали в Москву с подводами грабить город и вообще не выказывали лично геройских чувств, и все бесчисленное количество таких мужиков не везли сена в Москву за хорошие деньги, которые им предлагали, а жгли его.

Представим себе двух людей, вышедших на поединок с шпагами по всем правилам фехтовального искусства: фехтование продолжалось довольно долгое время; вдруг один из противников, почувствовав себя раненым – поняв, что дело это не шутка, а касается его жизни, бросил свою шпагу и, взяв первую попавшуюся дубину, начал ворочать ею. Но представим себе, что противник, так разумно употребивший лучшее и простейшее средство для достижения цели, вместе с тем воодушевленный преданиями рыцарства, захотел бы скрыть сущность дела и настаивал бы на том, что он по всем правилам искусства победил на шпагах. Можно себе представить, какая путаница и неясность произошла бы от такого описания происшедшего поединка.
Фехтовальщик, требовавший борьбы по правилам искусства, были французы; его противник, бросивший шпагу и поднявший дубину, были русские; люди, старающиеся объяснить все по правилам фехтования, – историки, которые писали об этом событии.
Со времени пожара Смоленска началась война, не подходящая ни под какие прежние предания войн. Сожжение городов и деревень, отступление после сражений, удар Бородина и опять отступление, оставление и пожар Москвы, ловля мародеров, переимка транспортов, партизанская война – все это были отступления от правил.
Наполеон чувствовал это, и с самого того времени, когда он в правильной позе фехтовальщика остановился в Москве и вместо шпаги противника увидал поднятую над собой дубину, он не переставал жаловаться Кутузову и императору Александру на то, что война велась противно всем правилам (как будто существовали какие то правила для того, чтобы убивать людей). Несмотря на жалобы французов о неисполнении правил, несмотря на то, что русским, высшим по положению людям казалось почему то стыдным драться дубиной, а хотелось по всем правилам стать в позицию en quarte или en tierce [четвертую, третью], сделать искусное выпадение в prime [первую] и т. д., – дубина народной войны поднялась со всей своей грозной и величественной силой и, не спрашивая ничьих вкусов и правил, с глупой простотой, но с целесообразностью, не разбирая ничего, поднималась, опускалась и гвоздила французов до тех пор, пока не погибло все нашествие.
И благо тому народу, который не как французы в 1813 году, отсалютовав по всем правилам искусства и перевернув шпагу эфесом, грациозно и учтиво передает ее великодушному победителю, а благо тому народу, который в минуту испытания, не спрашивая о том, как по правилам поступали другие в подобных случаях, с простотою и легкостью поднимает первую попавшуюся дубину и гвоздит ею до тех пор, пока в душе его чувство оскорбления и мести не заменяется презрением и жалостью.


Одним из самых осязательных и выгодных отступлений от так называемых правил войны есть действие разрозненных людей против людей, жмущихся в кучу. Такого рода действия всегда проявляются в войне, принимающей народный характер. Действия эти состоят в том, что, вместо того чтобы становиться толпой против толпы, люди расходятся врозь, нападают поодиночке и тотчас же бегут, когда на них нападают большими силами, а потом опять нападают, когда представляется случай. Это делали гверильясы в Испании; это делали горцы на Кавказе; это делали русские в 1812 м году.
Войну такого рода назвали партизанскою и полагали, что, назвав ее так, объяснили ее значение. Между тем такого рода война не только не подходит ни под какие правила, но прямо противоположна известному и признанному за непогрешимое тактическому правилу. Правило это говорит, что атакующий должен сосредоточивать свои войска с тем, чтобы в момент боя быть сильнее противника.
Партизанская война (всегда успешная, как показывает история) прямо противуположна этому правилу.
Противоречие это происходит оттого, что военная наука принимает силу войск тождественною с их числительностию. Военная наука говорит, что чем больше войска, тем больше силы. Les gros bataillons ont toujours raison. [Право всегда на стороне больших армий.]
Говоря это, военная наука подобна той механике, которая, основываясь на рассмотрении сил только по отношению к их массам, сказала бы, что силы равны или не равны между собою, потому что равны или не равны их массы.
Сила (количество движения) есть произведение из массы на скорость.
В военном деле сила войска есть также произведение из массы на что то такое, на какое то неизвестное х.
Военная наука, видя в истории бесчисленное количество примеров того, что масса войск не совпадает с силой, что малые отряды побеждают большие, смутно признает существование этого неизвестного множителя и старается отыскать его то в геометрическом построении, то в вооружении, то – самое обыкновенное – в гениальности полководцев. Но подстановление всех этих значений множителя не доставляет результатов, согласных с историческими фактами.
А между тем стоит только отрешиться от установившегося, в угоду героям, ложного взгляда на действительность распоряжений высших властей во время войны для того, чтобы отыскать этот неизвестный х.
Х этот есть дух войска, то есть большее или меньшее желание драться и подвергать себя опасностям всех людей, составляющих войско, совершенно независимо от того, дерутся ли люди под командой гениев или не гениев, в трех или двух линиях, дубинами или ружьями, стреляющими тридцать раз в минуту. Люди, имеющие наибольшее желание драться, всегда поставят себя и в наивыгоднейшие условия для драки.
Дух войска – есть множитель на массу, дающий произведение силы. Определить и выразить значение духа войска, этого неизвестного множителя, есть задача науки.
Задача эта возможна только тогда, когда мы перестанем произвольно подставлять вместо значения всего неизвестного Х те условия, при которых проявляется сила, как то: распоряжения полководца, вооружение и т. д., принимая их за значение множителя, а признаем это неизвестное во всей его цельности, то есть как большее или меньшее желание драться и подвергать себя опасности. Тогда только, выражая уравнениями известные исторические факты, из сравнения относительного значения этого неизвестного можно надеяться на определение самого неизвестного.
Десять человек, батальонов или дивизий, сражаясь с пятнадцатью человеками, батальонами или дивизиями, победили пятнадцать, то есть убили и забрали в плен всех без остатка и сами потеряли четыре; стало быть, уничтожились с одной стороны четыре, с другой стороны пятнадцать. Следовательно, четыре были равны пятнадцати, и, следовательно, 4а:=15у. Следовательно, ж: г/==15:4. Уравнение это не дает значения неизвестного, но оно дает отношение между двумя неизвестными. И из подведения под таковые уравнения исторических различно взятых единиц (сражений, кампаний, периодов войн) получатся ряды чисел, в которых должны существовать и могут быть открыты законы.
Тактическое правило о том, что надо действовать массами при наступлении и разрозненно при отступлении, бессознательно подтверждает только ту истину, что сила войска зависит от его духа. Для того чтобы вести людей под ядра, нужно больше дисциплины, достигаемой только движением в массах, чем для того, чтобы отбиваться от нападающих. Но правило это, при котором упускается из вида дух войска, беспрестанно оказывается неверным и в особенности поразительно противоречит действительности там, где является сильный подъем или упадок духа войска, – во всех народных войнах.
Французы, отступая в 1812 м году, хотя и должны бы защищаться отдельно, по тактике, жмутся в кучу, потому что дух войска упал так, что только масса сдерживает войско вместе. Русские, напротив, по тактике должны бы были нападать массой, на деле же раздробляются, потому что дух поднят так, что отдельные лица бьют без приказания французов и не нуждаются в принуждении для того, чтобы подвергать себя трудам и опасностям.


Так называемая партизанская война началась со вступления неприятеля в Смоленск.
Прежде чем партизанская война была официально принята нашим правительством, уже тысячи людей неприятельской армии – отсталые мародеры, фуражиры – были истреблены казаками и мужиками, побивавшими этих людей так же бессознательно, как бессознательно собаки загрызают забеглую бешеную собаку. Денис Давыдов своим русским чутьем первый понял значение той страшной дубины, которая, не спрашивая правил военного искусства, уничтожала французов, и ему принадлежит слава первого шага для узаконения этого приема войны.
24 го августа был учрежден первый партизанский отряд Давыдова, и вслед за его отрядом стали учреждаться другие. Чем дальше подвигалась кампания, тем более увеличивалось число этих отрядов.
Партизаны уничтожали Великую армию по частям. Они подбирали те отпадавшие листья, которые сами собою сыпались с иссохшего дерева – французского войска, и иногда трясли это дерево. В октябре, в то время как французы бежали к Смоленску, этих партий различных величин и характеров были сотни. Были партии, перенимавшие все приемы армии, с пехотой, артиллерией, штабами, с удобствами жизни; были одни казачьи, кавалерийские; были мелкие, сборные, пешие и конные, были мужицкие и помещичьи, никому не известные. Был дьячок начальником партии, взявший в месяц несколько сот пленных. Была старостиха Василиса, побившая сотни французов.
Последние числа октября было время самого разгара партизанской войны. Тот первый период этой войны, во время которого партизаны, сами удивляясь своей дерзости, боялись всякую минуту быть пойманными и окруженными французами и, не расседлывая и почти не слезая с лошадей, прятались по лесам, ожидая всякую минуту погони, – уже прошел. Теперь уже война эта определилась, всем стало ясно, что можно было предпринять с французами и чего нельзя было предпринимать. Теперь уже только те начальники отрядов, которые с штабами, по правилам ходили вдали от французов, считали еще многое невозможным. Мелкие же партизаны, давно уже начавшие свое дело и близко высматривавшие французов, считали возможным то, о чем не смели и думать начальники больших отрядов. Казаки же и мужики, лазившие между французами, считали, что теперь уже все было возможно.
22 го октября Денисов, бывший одним из партизанов, находился с своей партией в самом разгаре партизанской страсти. С утра он с своей партией был на ходу. Он целый день по лесам, примыкавшим к большой дороге, следил за большим французским транспортом кавалерийских вещей и русских пленных, отделившимся от других войск и под сильным прикрытием, как это было известно от лазутчиков и пленных, направлявшимся к Смоленску. Про этот транспорт было известно не только Денисову и Долохову (тоже партизану с небольшой партией), ходившему близко от Денисова, но и начальникам больших отрядов с штабами: все знали про этот транспорт и, как говорил Денисов, точили на него зубы. Двое из этих больших отрядных начальников – один поляк, другой немец – почти в одно и то же время прислали Денисову приглашение присоединиться каждый к своему отряду, с тем чтобы напасть на транспорт.
– Нет, бг'ат, я сам с усам, – сказал Денисов, прочтя эти бумаги, и написал немцу, что, несмотря на душевное желание, которое он имел служить под начальством столь доблестного и знаменитого генерала, он должен лишить себя этого счастья, потому что уже поступил под начальство генерала поляка. Генералу же поляку он написал то же самое, уведомляя его, что он уже поступил под начальство немца.
Распорядившись таким образом, Денисов намеревался, без донесения о том высшим начальникам, вместе с Долоховым атаковать и взять этот транспорт своими небольшими силами. Транспорт шел 22 октября от деревни Микулиной к деревне Шамшевой. С левой стороны дороги от Микулина к Шамшеву шли большие леса, местами подходившие к самой дороге, местами отдалявшиеся от дороги на версту и больше. По этим то лесам целый день, то углубляясь в середину их, то выезжая на опушку, ехал с партией Денисов, не выпуская из виду двигавшихся французов. С утра, недалеко от Микулина, там, где лес близко подходил к дороге, казаки из партии Денисова захватили две ставшие в грязи французские фуры с кавалерийскими седлами и увезли их в лес. С тех пор и до самого вечера партия, не нападая, следила за движением французов. Надо было, не испугав их, дать спокойно дойти до Шамшева и тогда, соединившись с Долоховым, который должен был к вечеру приехать на совещание к караулке в лесу (в версте от Шамшева), на рассвете пасть с двух сторон как снег на голову и побить и забрать всех разом.
Позади, в двух верстах от Микулина, там, где лес подходил к самой дороге, было оставлено шесть казаков, которые должны были донести сейчас же, как только покажутся новые колонны французов.
Впереди Шамшева точно так же Долохов должен был исследовать дорогу, чтобы знать, на каком расстоянии есть еще другие французские войска. При транспорте предполагалось тысяча пятьсот человек. У Денисова было двести человек, у Долохова могло быть столько же. Но превосходство числа не останавливало Денисова. Одно только, что еще нужно было знать ему, это то, какие именно были эти войска; и для этой цели Денисову нужно было взять языка (то есть человека из неприятельской колонны). В утреннее нападение на фуры дело сделалось с такою поспешностью, что бывших при фурах французов всех перебили и захватили живым только мальчишку барабанщика, который был отсталый и ничего не мог сказать положительно о том, какие были войска в колонне.
Нападать другой раз Денисов считал опасным, чтобы не встревожить всю колонну, и потому он послал вперед в Шамшево бывшего при его партии мужика Тихона Щербатого – захватить, ежели можно, хоть одного из бывших там французских передовых квартиргеров.


Был осенний, теплый, дождливый день. Небо и горизонт были одного и того же цвета мутной воды. То падал как будто туман, то вдруг припускал косой, крупный дождь.
На породистой, худой, с подтянутыми боками лошади, в бурке и папахе, с которых струилась вода, ехал Денисов. Он, так же как и его лошадь, косившая голову и поджимавшая уши, морщился от косого дождя и озабоченно присматривался вперед. Исхудавшее и обросшее густой, короткой, черной бородой лицо его казалось сердито.
Рядом с Денисовым, также в бурке и папахе, на сытом, крупном донце ехал казачий эсаул – сотрудник Денисова.
Эсаул Ловайский – третий, также в бурке и папахе, был длинный, плоский, как доска, белолицый, белокурый человек, с узкими светлыми глазками и спокойно самодовольным выражением и в лице и в посадке. Хотя и нельзя было сказать, в чем состояла особенность лошади и седока, но при первом взгляде на эсаула и Денисова видно было, что Денисову и мокро и неловко, – что Денисов человек, который сел на лошадь; тогда как, глядя на эсаула, видно было, что ему так же удобно и покойно, как и всегда, и что он не человек, который сел на лошадь, а человек вместе с лошадью одно, увеличенное двойною силою, существо.
Немного впереди их шел насквозь промокший мужичок проводник, в сером кафтане и белом колпаке.
Немного сзади, на худой, тонкой киргизской лошаденке с огромным хвостом и гривой и с продранными в кровь губами, ехал молодой офицер в синей французской шинели.
Рядом с ним ехал гусар, везя за собой на крупе лошади мальчика в французском оборванном мундире и синем колпаке. Мальчик держался красными от холода руками за гусара, пошевеливал, стараясь согреть их, свои босые ноги, и, подняв брови, удивленно оглядывался вокруг себя. Это был взятый утром французский барабанщик.
Сзади, по три, по четыре, по узкой, раскиснувшей и изъезженной лесной дороге, тянулись гусары, потом казаки, кто в бурке, кто во французской шинели, кто в попоне, накинутой на голову. Лошади, и рыжие и гнедые, все казались вороными от струившегося с них дождя. Шеи лошадей казались странно тонкими от смокшихся грив. От лошадей поднимался пар. И одежды, и седла, и поводья – все было мокро, склизко и раскисло, так же как и земля, и опавшие листья, которыми была уложена дорога. Люди сидели нахохлившись, стараясь не шевелиться, чтобы отогревать ту воду, которая пролилась до тела, и не пропускать новую холодную, подтекавшую под сиденья, колени и за шеи. В середине вытянувшихся казаков две фуры на французских и подпряженных в седлах казачьих лошадях громыхали по пням и сучьям и бурчали по наполненным водою колеям дороги.
Лошадь Денисова, обходя лужу, которая была на дороге, потянулась в сторону и толканула его коленкой о дерево.