Электростатика

Поделись знанием:
Перейти к: навигация, поиск
   Классическая электродинамика
Электричество · Магнетизм
См. также: Портал:Физика

Электростатика — раздел учения об электричестве, изучающий взаимодействие неподвижных электрических зарядов.

Между одноимённо заряженными телами возникает электростатическое (или кулоновское) отталкивание, а между разноимённо заряженными — электростатическое притяжение. Явление отталкивания одноименных зарядов лежит в основе создания электроскопа — прибора для обнаружения электрических зарядов.

В основе электростатики лежит закон Кулона. Этот закон описывает взаимодействие точечных электрических зарядов.





История

Основание электростатики положили работы Кулона (хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш. Результаты работ Кавендиша хранились в семейном архиве и были опубликованы только спустя сто лет); найденный последним закон электрических взаимодействий дал возможность Грину, Гауссу и Пуассону создать изящную в математическом отношении теорию. Самую существенную часть электростатики составляет теория потенциала, созданная Грином и Гауссом. Очень много опытных исследований по электростатике было произведено Рисом[1] книги которого составляли в прежнее время главное пособие при изучении этих явлений.

Опыты Фарадея, произведенные ещё в первую половину тридцатых годов XIX века, должны были повлечь за собой коренное изменение в основных положениях учения об электрических явлениях. Эти опыты указали, что то, что считалось совершенно пассивно относящимся к электричеству, а именно, изолирующие вещества или, как их назвал Фарадей, диэлектрики, имеет определяющее значение во всех электрических процессах и, в частности, в самой электризации проводников. Эти опыты обнаружили, что вещество изолирующего слоя между двумя поверхностями конденсатора играет важную роль в величине электроёмкости этого конденсатора. Замена воздуха, как изолирующего слоя между поверхностями конденсатора, каким-либо другим жидким или твёрдым изолятором производит на величину электроемкости конденсатора такое же действие, какое оказывает соответствующее уменьшение расстояния между этими поверхностями при сохранении воздуха в качестве изолятора. При замене слоя воздуха слоем другого жидкого или твёрдого диэлектрика электроемкость конденсатора увеличивается в K раз. Эта величина K названа Фарадеем индуктивной способностью данного диэлектрика. Сегодня величину K называют обыкновенно диэлектрической проницаемостью этого изолирующего вещества.

Такое же изменение электрической ёмкости происходит и в каждом отдельном проводящем теле, когда это тело из воздуха переносится в другую изолирующую среду. Но изменение электроемкости тела влечет за собой изменение величины заряда на этом теле при данном потенциале на нём, а также и обратно, изменение потенциала тела при данном заряде его. Вместе с этим оно изменяет и электрическую энергию тела. Итак, значение изолирующей среды, в которой помещены электризуемые тела или которая отделяет собой поверхности конденсатора, является крайне существенным. Изолирующее вещество не только удерживает электрический заряд на поверхности тела, оно влияет на само электрическое состояние последнего. Таково заключение, к какому привели Фарадея его опыты. Это заключение вполне соответствовало основному взгляду Фарадея на электрические действия.

Согласно гипотезе Кулона, электрические действия между телами рассматривались, как действия, которые происходят на расстоянии. Принималось, что два заряда q и q', мысленно сосредоточенные в двух точках, отстоящих друг от друга на расстояние r, отталкивают или притягивают один другого по направлению линии, соединяющей эти две точки, с силой, которая определяется формулой

<math>f = C \frac{qq'}{r^2}, </math>

причём коэффициент C является зависящим исключительно только от единиц, служащих для измерения величин q, r и f. Природа среды, внутри которой находятся данные две точки с зарядами q и q', предполагалось, не имеет никакого значения, не влияет на величину f. Фарадей держался совершенно иного взгляда на это. По его мнению, наэлектризованное тело только кажущимся образом действует на другое тело, находящееся в некотором расстоянии от него; на самом деле электризуемое тело лишь вызывает особые изменения в соприкасающейся с ним изолирующей среде, которые передаются в этой среде от слоя к слою, достигают, наконец, слоя, непосредственно прилегающего к другому рассматриваемому телу и производят там то, что представляется непосредственным действием первого тела на второе через отделяющую их среду. При таком воззрении на электрические действия закон Кулона, выражающийся вышепривёденной формулой, может служить только для описания того, что даёт наблюдение, и нисколько не выражает истинного процесса, происходящего при этом. Тогда становится понятным, что вообще электрические действия меняются при перемене изолирующей среды, поскольку в этом случае должны изменяться и те деформации, какие возникают в пространстве между двумя, по-видимому, действующими друг на друга наэлектризованными телами. Закон Кулона, так сказать, описывающий внешним образом явление, должен быть заменён другим, в который входит характеристика природы изолирующей среды. Для изотропной и однородной среды закон Кулона, как показали дальнейшие исследования, может быть выражен следующей формулой:

<math>f = (C/K)\frac{qq'}{r^2}.</math>

Здесь K обозначает то, что выше названо диэлектрической постоянной данной изолирующей среды. Величина K для воздуха равна единице, то есть для воздуха взаимодействие между двумя точками с зарядами q и q' выражается так, как принял это Кулон.

Согласно основной идее Фарадея, окружающая изолирующая среда или, лучше, те изменения (поляризация среды), какие под влиянием процесса, приводящего тела в электрическое состояние, являются в наполняющем эту среду эфире, представляют собою причину всех наблюдаемых нами электрических действий. По Фарадею сама электризация проводников на их поверхности — лишь следствие влияния на них поляризованной окружающей среды. Изолирующая среда при этом находится в напряженном состоянии. На основании весьма простых опытов Фарадей пришёл к заключению, что при возбуждении электрической поляризации в какой-либо среде, при возбуждении, как говорят теперь, электрического поля, в этой среде должно существовать натяжение вдоль силовых линий (силовая линия — это линия, касательные к которой совпадают с направлениями электрических сил, испытываемых положительным электричеством, воображенным в точках, находящихся на этой линии) и должно существовать давление по направлениям, перпендикулярным к силовым линиям. Такое напряженное состояние может вызываться только в изоляторах. Проводники не способны испытывать подобное изменение своего состояния, в них не происходит никакого возмущения; и только на поверхности таких проводящих тел, то есть на границе между проводником и изолятором, поляризованное состояние изолирующей среды становится заметным, оно выражается в кажущемся распределении электричества на поверхности проводников. Итак, наэлектризованный проводник как бы связан с окружающей изолирующей средой. С поверхности этого наэлектризованного проводника как бы распространяются силовые линии, и эти линии заканчиваются на поверхности другого проводника, который видимым образом представляется покрытым противоположным по знаку электричеством. Вот какова картина, которую рисовал себе Фарадей для разъяснения явлений электризации.

Учение Фарадея нескоро было принято физиками. Опыты Фарадея рассматривались даже в шестидесятых годах как не дающие права на допущение какого-либо существенного значения изоляторов в процессах электризации проводников. Только позднее, после появления замечательных работ Максвелла, идеи Фарадея стали все более и более распространяться между учёными и, наконец, были признаны вполне отвечающими фактам.

Здесь уместно отметить, что ещё в шестидесятых годах проф. Ф. H. Шведов, на основании произведенных им опытов, весьма горячо и убедительно доказывал верность основных положений Фарадея относительно роли изоляторов[2]. На самом деле, однако, за много лет до работ Фарадея уже было открыто влияние изоляторов на электрические процессы. Ещё в начале 70-х годов XVIII столетия Кавендиш наблюдал и весьма тщательно изучил значение природы изолирующего слоя в конденсаторе. Опыты Кавендиша, как и впоследствии опыты Фарадея, показали увеличение электроемкости конденсатора, когда слой воздуха в этом конденсаторе заменяется такой же толщины слоем какого-либо твёрдого диэлектрика. Эти опыты дают даже возможность определить численные величины диэлектрических постоянных некоторых изолирующих веществ, причём эти величины получаются сравнительно немного отличающимися от тех, какие найдены в последнее время при употреблении более совершенных измерительных приборов. Но эта работа Кавендиша, как и другие его исследования по электричеству, приведшие его к установлению закона электрических взаимодействий, тождественного с законом, опубликованным в 1785 г. Кулоном, оставались неизвестными вплоть до 1879 г. Только в этом году мемуары Кавендиша были обнародованы Максвеллом[3], повторившим почти все опыты Кавендиша и сделавшим по поводу их многие, весьма ценные указания.

Потенциал

Как уже выше упомянуто, в основу электростатики, вплоть до появления работ Максвелла, был положен закон Кулона: <math>F = C \frac{qq'}{r^2}</math>. При допущении С = 1, то есть при выражении количества электричества в так называемой абсолютной электростатической системе единиц (СГСЭ), этот закон Кулона получает выражение
<math>F = \frac{qq'}{r^2},</math>

отсюда, потенциальная функция или, проще, потенциал в точке, координаты которой (x, у, z), определяется формулой:

<math>V = \int{\frac{dq}{r}},\qquad(1)</math>

в которой интеграл распространяется на все электрические заряды в данном пространстве, а r обозначает расстояние элемента заряда dq до точки (x, у, z). Обозначая поверхностную плотность электричества на наэлектризованных телах через σ, а объёмную плотность электричества в них через ρ, мы имеем

<math>V = \iint{\sigma\frac{dS}{r}}+\iiint{\rho\frac{d\xi d\zeta d\eta}{r}}.\qquad(2)</math>

Здесь dS обозначает элемент поверхности тела, (ζ, η, ξ) — координаты элемента объёма тела. Проекции на оси координат электрической силы F, испытываемой единицей положительного электричества в точке (x, у, z) находятся по формулам:

<math>X = - \frac{\partial V}{\partial x}, Y = - \frac{\partial V}{\partial y}, Z = - \frac{\partial V}{\partial z}.\qquad(3)</math>

Поверхности, во всех точках которых V = пост., носят название эквипотенциальных поверхностей или, проще, поверхностей уровня. Линии, ортогональные к этим поверхностям, суть электрические силовые линии. Пространство, в котором могут быть обнаружены электрические силы, то есть в котором могут быть построены силовые линии, носит название электрического поля. Сила, испытываемая единицей электричества в какой-либо точке этого поля, называется напряженностью электрического поля в этой точке. Функция V обладает следующими свойствами: она конечна, непрерывна. Определена с точностью до произвольной константы, поэтому её также можно задать так, чтобы она обращалась в 0 в точках, отстоящих от данного распределения электричества на бесконечное расстояние. Потенциал сохраняет одну и ту же величину во всех точках какого-либо проводящего тела. Для всех точек земного шара, а также для всех проводников, металлически соединённых с землей, функция V равна 0 (при этом не обращается внимания на явление Вольты, о котором сообщено в статье Электризация). Обозначая через F величину электрической силы, испытываемой единицей положительного электричества в какой-нибудь точке на поверхности S, замыкающей собой часть пространства, и через ε — угол, образуемый направлением этой силы с внешней нормалью к поверхности S в той же точке, мы имеем

<math>\iint{F\cos \varepsilon dS} = 4 \pi Q .\qquad(4)</math>

В этой формуле интеграл распространяется на всю поверхность S, a Q обозначает алгебраическую сумму количества электричества, заключающихся внутри замкнутой поверхности S. Равенство (4) выражает собой теорему, известную под названием теоремы Гаусса. Одновременно с Гауссом такое же равенство было получено Грином, почему некоторые авторы эту теорему называют теоремой Грина. Из теоремы Гаусса могут быть выведены как следствия,

a) теорема Пуассона

<math>\Delta V=-4 \pi\rho, \qquad(5)</math>

здесь ρ обозначает объёмную плотность электричества в точке (x, у, z);

b) теорема Лапласа

<math>\Delta V=0, \qquad(6)</math>

такое уравнение относится ко всем точкам, в которых не имеется электричества

с) граничное условие

<math>\frac{dV}{dn_1} + \frac{dV}{dn_2} =-4 \pi\sigma. \qquad(7)</math>

Здесь <math>\Delta</math> — оператор Лапласа, n1 и n2 обозначают нормали в точке какой-либо поверхности, в которой поверхностная плотность электричества σ, нормали, проведенные в ту и в другую сторону от поверхности. Из теоремы Пуассона следует, что для проводящего тела, в котором во всех точках V = пост., должно быть ρ = 0. Поэтому выражение потенциала принимает вид

<math>V = \iint{\sigma \frac{dS}{r}}. \qquad(8)</math>

Из формулы, выражающей граничное условие, то есть из формулы (7), следует, что на поверхности проводника

<math>\Sigma = - \frac{1}{4\pi} \frac{dV}{dn},\qquad(9)</math>

причём n обозначает нормаль к этой поверхности, направленную от проводника внутрь изолирующей среды, прилегающей к этому проводнику. Из этой же формулы выводится

<math>F_n = 4\pi\sigma.\qquad(10)</math>

Здесь Fn обозначает силу, испытываемую единицей положительного электричества, находящегося в точке, бесконечно близко лежащей к поверхности проводника, имеющей в этом месте поверхностную плотность электричества, равную σ. Сила Fn направлена по нормали к поверхности в этом месте. Сила, испытываемая единицей положительного электричества, находящегося в самом электрическом слое на поверхности проводника и направленная по внешней нормали к этой поверхности, выражается через

<math>\Phi = 2\pi\sigma.\qquad(11)</math>

Отсюда электрическое давление, испытываемое по направлению внешней нормали каждой единицей поверхности наэлектризованного проводника, выражается формулой

<math>P = 2 \pi\sigma^2.\qquad(12)</math>

Приведенные уравнения и формулы дают возможность делать немало выводов, относящихся к вопросам, рассматриваемым в Э. Но все они могут быть заменены ещё более общими, если воспользоваться тем, что содержится в теории электростатики, данной Максвеллом.

Электростатика Максвелла

Как уже упомянуто выше, Максвелл явился истолкователем идей Фарадея. Он облек эти идеи в математическую форму. Основание теории Максвелла заключается не в законе Кулона, а в принятии гипотезы, которая выражается в следующем равенстве:

<math>\iint{KF\cos \varepsilon dS} = 4 \pi Q.\qquad(13)</math>

Здесь интеграл распространяется по какой угодно замкнутой поверхности S, F обозначает величину электрической силы, которую испытывает единица электричества в центре элемента этой поверхности dS, ε обозначает угол, образуемый этой силой с внешней нормалью к элементу поверхности dS, К обозначает диэлектрический коэффициент среды, прилегающей к элементу dS, и Q обозначает алгебраическую сумму количеств электричества, заключающихся внутри поверхности S. Следствиями выражения (13) являются нижеследующие уравнения:

<math>\nabla K \nabla V + 4\pi\rho = 0,\qquad(14)</math>
<math>K_1\frac{dV}{dn_1} + K_2\frac{dV}{dn_2} + 4\pi\sigma = 0.\qquad(15)</math>

Эти уравнения более общи, чем уравнения (5) и (7). Они относятся к случаю каких угодно изотропных изолирующих сред. Функция V, являющаяся общим интегралом уравнения (14) и удовлетворяющая вместе с этим уравнению (15) для всякой поверхности, которая отделяет собой две диэлектрические среды с диэлектрическими коэффициентами K1 и K2, а также условию V = пост. для каждого, находящегося в рассматриваемом электрическом поле проводника, представляет собой потенциал в точке (x, у, z). Из выражения (13) также следует, что кажущееся взаимодействие двух зарядов q и q1, находящихся в двух точках, расположенных в однородной изотропной диэлектрической среде на расстоянии r друг от друга, может быть представлено формулой

<math>f = \frac{qq_1}{Kr^2},\qquad(16)</math>

то есть это взаимодействие обратно пропорционально квадрату расстояния, как это должно быть согласно закону Кулона.

Из уравнения (15) мы получаем для проводника:

<math>\sigma = \frac{K}{4\pi}\frac{dV}{dn},\qquad(17)</math>
<math>F_n = \frac{4\pi\sigma}{K},\qquad(18)</math>
<math>P = \frac{2\pi\sigma^2}{K}.\qquad(19)</math>

Формулы эти более общие, чем вышеприведенные (9), (10) и (12).

<math>KF\cos\varepsilon dS</math> представляет собой выражение потока электрической индукции через элемент dS. Проведя через все точки контура элемента dS линии, совпадающие с направлениями F в этих точках, мы получаем (для изотропной диэлектрической среды) трубку индукции. Для всех сечений такой трубки индукции, не заключающей внутри себя электричества, должно быть, как это следует из уравнения (14),

KFCos ε dS = пост.

Не трудно доказать, что если в какой-либо системе тел электрические заряды находятся в равновесии, когда плотности электричества соответственно суть σ1 и ρ1 или σ2 и ρ2, то заряды будут в равновесии и тогда, когда плотности будут σ = σ1 + σ2 и ρ = ρ1 + ρ2  (принцип сложения зарядов, находящихся в равновесии). Равным образом легко доказать, что при данных условиях может быть только одно распределение электричества в телах, составляющих собой какую-либо систему.

Весьма важным оказывается свойство проводящей замкнутой поверхности, находящейся в соединении с землёй. Такая замкнутая поверхность является экраном, защитой для всего пространства, заключённого внутри неё, от влияния каких угодно электрических зарядов, расположенных с внешней стороны поверхности. Вследствие этого электрометры и другие измерительные электрические приборы окружаются обыкновенно металлическими футлярами, соединяемыми с землёй. Опыты показывают, что для таких электрических экранов нет надобности употреблять сплошной металл, вполне достаточно эти экраны устраивать из металлических сеток или даже металлических решёток.

Система наэлектризованных тел обладает энергией, то есть обладает способностью совершить определённую работу при полной потере своего электрического состояния. B электростатике выводится следующее выражение для энергии системы наэлектризованных тел:

<math>W = \frac{1}{2}\Sigma VQ.\qquad(20)</math>

В этой формуле Q и V обозначают соответственно какое-либо количество электричества в данной системе и потенциал в том месте, где находится это количество; знак ∑ указывает, что надо взять сумму произведений VQ для всех количеств Q данной системы. Если система тел представляет собой систему проводников, то для каждого такого проводника потенциал имеет одну и ту же величину во всех точках этого проводника, а потому в данном случае выражение для энергии получает вид:

<math>W = \frac{1}{2}\left(V_1q_1 + V_2q_2 +... + V_nq_n\right).\qquad(21)</math>

Здесь 1, 2.. n суть значки разных проводников, входящих в состав системы. Это выражение может быть заменено другими, а именно, электрическая энергия системы проводящих тел может быть представлена или в зависимости от зарядов этих тел, или же в зависимости от потенциалов их, то есть для этой энергии могут быть применены выражения:

<math>W_Q = \frac{1}{2}\alpha_{11}Q_1^2 + \alpha_{12}Q_1Q_2+ \alpha_{13}Q_1Q_3 +... + \frac{1}{2}\alpha_{22}Q_2^2 + \alpha_{23}Q_2Q_3 +... + \frac{1}{2}\alpha_{nn}Q_n^2,\qquad(22)</math>
<math>W_V = \frac{1}{2}\beta_{11}V_1^2 + \beta_{12}V_1V_2 + \beta_{13}V_1V_3 +... + \frac{1}{2}\beta_{22}V_2^2 + \beta_{23}V_2V_3 +... + \frac{1}{2}\beta_{nn}V_n^2.\qquad(23)</math>

В этих выражениях различные коэффициенты α и β зависят от параметров, определяющих собой положения проводящих тел в данной системе, а также формы и размеры их. При этом коэффициенты β с двумя одинаковыми значками, как то β11, β22, β33 и т. д. представляют собой электроемкости (см. Электрическая ёмкость) тел, отмеченных этими значками, коэффициенты β с двумя различными значками, как то β12, β23, β24, и т. д., представляют собой коэффициенты взаимной индукции двух тел, значки которых стоят у данного коэффициента.

Имея выражение электрической энергии, мы получаем выражение для силы, какую испытывает какое-либо тело, значок которого i, и от действия которой параметр si, служащий для определения положения этого тела, получает приращение. Выражение этой силы <math>F_{s_i}</math> будет

<math>F_{s_i} = - \frac{\partial W_q}{\partial s_i},\qquad(24)</math>

или

<math>f_{s_i} = - \frac{\partial W_v}{\partial s_i}.\qquad(25)</math>

Электрическая энергия может быть представлена ещё иначе, а именно, через

<math>W = \frac{1}{8\pi}\iiint{KF^2dxdydz}.\qquad(26)</math>

В этой формуле интегрирование распространяется по всему беспредельному пространству, F обозначает величину электрической силы, испытываемой единицей положительного электричества в точке (x, у, z), то есть напряжённость электрического поля в этой точке, а K обозначает диэлектрический коэффициент в этой же точке. При таком выражении электрической энергии системы проводящих тел эту энергию можно рассматривать распределенной только в изолирующих средах, причём на долю элемента dxdyds диэлектрика приходится энергий <math> \frac{K}{8\pi}F^2dxdydz</math>. Выражение (26) вполне соответствует взглядам на электрические процессы, которые были развиваемы Фарадеем и Максвеллом.

Формула Грина

Чрезвычайно важной формулой в электростатике является формула Грина, а именно:

<math>\iiint{U\Delta Vdxdydz} + \iint{U\frac{dV}{dn}dS} = \iiint{V\Delta Udxdydz} + \iint{V\frac{dU}{dn}dS}.\qquad(27)</math>

В этой формуле оба тройные интеграла распространяются на весь объём какого-либо пространства А, двойные — на все поверхности, ограничивающие это пространство, ∆V и ∆U обозначают суммы вторых производных от функций V и U по x, у, z; n — нормаль к элементу dS ограничивающей поверхности, направленную внутрь пространства A.

Примеры[прояснить]

Пример 1

Как частный случай формулы Грина получается формула, выражающая вышеприведенную теорему Гаусса. В Энциклопедическом Словаре не уместно касаться вопросов о законах распределения электричества на различных телах. Эти вопросы представляют собой весьма трудные задачи математической физики и для решения такой задачи употребляются различные способы. Приведем здесь только для одного тела, а именно, для эллипсоида с полуосями а, b, с, выражение поверхностной плотности электричества σ в точке (x, у, z). Мы находим:

<math>\sigma = \frac{Q}{4\pi abc} \left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^{-1/2}.</math>

Здесь Q обозначает все количество электричества, находящееся на поверхности этого эллипсоида. Потенциал такого эллипсоида в какой-нибудь точке его поверхности, когда вокруг эллипсоида находится однородная изотропная изолирующая среда с диэлектрическим коэффициентом K, выражается через

<math>V = \frac{Q}{4\pi Kabc}\iiint{\frac{dS}{\sqrt{(x^2 + y^2 + z^2)} \sqrt{\left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)}}}.</math>

Электроёмкость эллипсоида получится из формулы

<math>C = \frac{Q}{V}.</math>

Пример 2

Пользуясь уравнением (14), полагая только в нём ρ = 0 и K = пост., и формулой (17), мы можем найти выражение для электроёмкости плоского конденсатора с охранным кольцом и охранной коробкой, изолирующей слой в котором имеет диэлектрический коэффициент K. Это выражение имеет вид

<math>C = \frac{KS}{4\pi D}.\qquad(28)</math>

Здесь S обозначает величину собирательной поверхности конденсатора, D — толщину изолирующего слоя его. Для конденсатора без охранного кольца и охранной коробки формула (28) будет давать только приближенное выражение электроёмкости. Для электроемкости такого конденсатора дана формула Кирхгофом. И даже для конденсатора с охранными кольцом и коробкой формула (29) не представляет вполне строгого выражения электроемкости. Максвелл указал ту поправку, какую надо сделать в этой формуле, чтобы получить более строгий результат.

Энергия плоского конденсатора (с охранными кольцом и коробкой) выражается через

<math>W = \frac{KS}{8\pi D}(V_1 - V_2)^2.\qquad(29)</math>

Здесь V1 и V2 суть потенциалы проводящих поверхностей конденсатора.

Пример 3

Для сферического конденсатора получается выражение электроемкости:

<math>C = K \frac{R_1R_2}{R_2-R_1},</math>

в котором R1 и R2 обозначают соответственно радиусы внутренней и внешней проводящей поверхности конденсатора. При помощи выражения для электрической энергии (формула 22) нетрудно устанавливается теория абсолютного и квадрантного электрометров (см. Электрометры).

Диэлектрическая проницаемость

Нахождение величины диэлектрического коэффициента K какого-либо вещества, коэффициента, входящего почти во все формулы, с которыми приходится иметь дело в электростатике, может быть произведено весьма различными способами. Наиболее употребительные способы суть нижеследующие.

1) Сравнение электроёмкостей двух конденсаторов, имеющих одинаковые размеры и форму, но у которых у одного изолирующим слоем является слой воздуха, у другого — слой испытуемого диэлектрика.

2) Сравнение притяжений между поверхностями конденсатора, когда этим поверхностям сообщается определённая разность потенциалов, но в одном случае между ними находится воздух (сила притяжения = F0), в другом случае — испытуемый жидкий изолятор (сила притяжения = F). Диэлектрический коэффициент находится по формуле:

<math>K = \frac{F_0}{F}.</math>

3) Наблюдения электрических волн (см. Электрические колебания), распространяющихся вдоль проволок. По теория Максвелла скорость распространения электрических волн вдоль проволок выражается формулой

<math>V = \frac{1}{\sqrt{K\mu}}.</math>

в которой K обозначает диэлектрический коэффициент среды, окружающей собой проволоку, μ обозначает магнитную проницаемость этой среды. Можно положить для огромного большинства тел μ = 1, а потому получается

<math>V = \frac{1}{\sqrt{K}}.</math>

Обыкновенно сравнивают длины стоячих электрических волн, возникающих в частях одной и той же проволоки, находящихся в воздухе и в испытуемом диэлектрике (жидком). Определив эти длины λ0 и λ, получают K = λ02/ λ 2. По теории Максвелла следует, что при возбуждении электрического поля в каком-либо изолирующем веществе внутри этого вещества возникают особые деформации. Вдоль трубок индукции изолирующая среда является поляризованной. В ней возникают электрические смещения, которые можно уподобить перемещениям положительного электричества по направлению осей этих трубок, причём через каждое поперечное сечение трубки проходит количество электричества, равное

<math>D = \frac{1}{4\pi}KF.</math>

Теория Максвелла даёт возможность найти выражения тех внутренних сил (сил натяжения и давления), которые являются в диэлектриках при возбуждении в них электрического поля. Этот вопрос был впервые рассмотрен самим Максвеллом, а позже и более обстоятельно Гельмгольцем[4]. Дальнейшее развитие теории этого вопроса и тесно соединённой с этим теории электрострикции (то есть теории, рассматривающей явления, зависящие от возникновения особых напряжений в диэлектриках при возбуждении в них электрического поля) принадлежит работам Лорберга, Кирхгофа, П. Дюгема, Н. Н. Шиллера и некоторых др.

Граничные условия

Закончим краткое изложение наиболее существенного из отдела электрострикции рассмотрением вопроса о преломлении трубок индукции. Представим себе в электрическом поле два диэлектрика, отделяющихся друг от друга какой-нибудь поверхностью S, с диэлектрическими коэффициентами К1 и К2.

Пусть в точках Р1 и Р2, расположенных бесконечно близко к поверхности S по ту и по другую её сторону, величины потенциалов выражаются через V1 и V2, а величины сил, испытываемых помещенной в этих точках единицей положительного электричества чрез F1 и F2. Тогда для точки Р, лежащей на самой поверхности S, должно быть V1 = V2,

<math>\frac{dV_1}{ds} = \frac{dV_2}{ds},\qquad(30)</math>

если ds представляет бесконечно малое перемещение по линии пересечения касательной плоскости к поверхности S в точке Р с плоскостью, проходящей через нормаль к поверхности в этой точке и через направление электрической силы в ней. С другой стороны, должно быть

<math>K_1 \frac{dV_1}{dn_1} + K_2 \frac{dV_2}{dn_2} = 0.\qquad(31)</math>

Обозначим через ε2 угол, составляемый силой F2 с нормалью n2 (внутрь второго диэлектрика), и через ε1 угол, составляемый силой F1 с той же нормалью n2 Тогда, пользуясь формулами (31) и (30), найдем

<math>\frac{\mathrm{tg}{\varepsilon_1}}{\mathrm{tg}{\varepsilon_2}} = \frac{K_1}{K_2}.</math>

Итак, на поверхности, отделяющей друг от друга два диэлектрика, электрическая сила претерпевает изменение в своём направлении подобно световому лучу, входящему из одной среды в другую. Это следствие теории оправдывается на опыте.

См. также

Напишите отзыв о статье "Электростатика"

Литература

Ссылки

  • Константин Богданов. [elementy.ru/lib/431100 Что может электростатика] // Квант. — М.: Бюро Квантум, 2010. — № 2.

Примечания

  1. P. Riess «Die Lehre von der Reibungselektricität» (1853, в 2 томах), P. Riess «Abhandlungen zu der Lehre von der Reibungselektricität» (1867)
  2. (Шведов Ф. H., «О значении непроводников в электростатике.» магистерская диссертация, СПб., 1868)
  3. «The Electrical Researches of the Honourable Henry Cavendish. Edited by J. C. Maxwell» (1879)
  4. Helmhoitz, «Wissenschaftliche Abhandlungen», 1, стр. 798

Отрывок, характеризующий Электростатика

Несколько раз Пьер собирался говорить, но с одной стороны князь Василий не допускал его до этого, с другой стороны сам Пьер боялся начать говорить в том тоне решительного отказа и несогласия, в котором он твердо решился отвечать своему тестю. Кроме того слова масонского устава: «буди ласков и приветлив» вспоминались ему. Он морщился, краснел, вставал и опускался, работая над собою в самом трудном для него в жизни деле – сказать неприятное в глаза человеку, сказать не то, чего ожидал этот человек, кто бы он ни был. Он так привык повиноваться этому тону небрежной самоуверенности князя Василия, что и теперь он чувствовал, что не в силах будет противостоять ей; но он чувствовал, что от того, что он скажет сейчас, будет зависеть вся дальнейшая судьба его: пойдет ли он по старой, прежней дороге, или по той новой, которая так привлекательно была указана ему масонами, и на которой он твердо верил, что найдет возрождение к новой жизни.
– Ну, мой милый, – шутливо сказал князь Василий, – скажи же мне: «да», и я от себя напишу ей, и мы убьем жирного тельца. – Но князь Василий не успел договорить своей шутки, как Пьер с бешенством в лице, которое напоминало его отца, не глядя в глаза собеседнику, проговорил шопотом:
– Князь, я вас не звал к себе, идите, пожалуйста, идите! – Он вскочил и отворил ему дверь.
– Идите же, – повторил он, сам себе не веря и радуясь выражению смущенности и страха, показавшемуся на лице князя Василия.
– Что с тобой? Ты болен?
– Идите! – еще раз проговорил дрожащий голос. И князь Василий должен был уехать, не получив никакого объяснения.
Через неделю Пьер, простившись с новыми друзьями масонами и оставив им большие суммы на милостыни, уехал в свои именья. Его новые братья дали ему письма в Киев и Одессу, к тамошним масонам, и обещали писать ему и руководить его в его новой деятельности.


Дело Пьера с Долоховым было замято, и, несмотря на тогдашнюю строгость государя в отношении дуэлей, ни оба противника, ни их секунданты не пострадали. Но история дуэли, подтвержденная разрывом Пьера с женой, разгласилась в обществе. Пьер, на которого смотрели снисходительно, покровительственно, когда он был незаконным сыном, которого ласкали и прославляли, когда он был лучшим женихом Российской империи, после своей женитьбы, когда невестам и матерям нечего было ожидать от него, сильно потерял во мнении общества, тем более, что он не умел и не желал заискивать общественного благоволения. Теперь его одного обвиняли в происшедшем, говорили, что он бестолковый ревнивец, подверженный таким же припадкам кровожадного бешенства, как и его отец. И когда, после отъезда Пьера, Элен вернулась в Петербург, она была не только радушно, но с оттенком почтительности, относившейся к ее несчастию, принята всеми своими знакомыми. Когда разговор заходил о ее муже, Элен принимала достойное выражение, которое она – хотя и не понимая его значения – по свойственному ей такту, усвоила себе. Выражение это говорило, что она решилась, не жалуясь, переносить свое несчастие, и что ее муж есть крест, посланный ей от Бога. Князь Василий откровеннее высказывал свое мнение. Он пожимал плечами, когда разговор заходил о Пьере, и, указывая на лоб, говорил:
– Un cerveau fele – je le disais toujours. [Полусумасшедший – я всегда это говорил.]
– Я вперед сказала, – говорила Анна Павловна о Пьере, – я тогда же сейчас сказала, и прежде всех (она настаивала на своем первенстве), что это безумный молодой человек, испорченный развратными идеями века. Я тогда еще сказала это, когда все восхищались им и он только приехал из за границы, и помните, у меня как то вечером представлял из себя какого то Марата. Чем же кончилось? Я тогда еще не желала этой свадьбы и предсказала всё, что случится.
Анна Павловна по прежнему давала у себя в свободные дни такие вечера, как и прежде, и такие, какие она одна имела дар устроивать, вечера, на которых собиралась, во первых, la creme de la veritable bonne societe, la fine fleur de l'essence intellectuelle de la societe de Petersbourg, [сливки настоящего хорошего общества, цвет интеллектуальной эссенции петербургского общества,] как говорила сама Анна Павловна. Кроме этого утонченного выбора общества, вечера Анны Павловны отличались еще тем, что всякий раз на своем вечере Анна Павловна подавала своему обществу какое нибудь новое, интересное лицо, и что нигде, как на этих вечерах, не высказывался так очевидно и твердо градус политического термометра, на котором стояло настроение придворного легитимистского петербургского общества.
В конце 1806 года, когда получены были уже все печальные подробности об уничтожении Наполеоном прусской армии под Иеной и Ауерштетом и о сдаче большей части прусских крепостей, когда войска наши уж вступили в Пруссию, и началась наша вторая война с Наполеоном, Анна Павловна собрала у себя вечер. La creme de la veritable bonne societe [Сливки настоящего хорошего общества] состояла из обворожительной и несчастной, покинутой мужем, Элен, из MorteMariet'a, обворожительного князя Ипполита, только что приехавшего из Вены, двух дипломатов, тетушки, одного молодого человека, пользовавшегося в гостиной наименованием просто d'un homme de beaucoup de merite, [весьма достойный человек,] одной вновь пожалованной фрейлины с матерью и некоторых других менее заметных особ.
Лицо, которым как новинкой угащивала в этот вечер Анна Павловна своих гостей, был Борис Друбецкой, только что приехавший курьером из прусской армии и находившийся адъютантом у очень важного лица.
Градус политического термометра, указанный на этом вечере обществу, был следующий: сколько бы все европейские государи и полководцы ни старались потворствовать Бонапартию, для того чтобы сделать мне и вообще нам эти неприятности и огорчения, мнение наше на счет Бонапартия не может измениться. Мы не перестанем высказывать свой непритворный на этот счет образ мыслей, и можем сказать только прусскому королю и другим: тем хуже для вас. Tu l'as voulu, George Dandin, [Ты этого хотел, Жорж Дандэн,] вот всё, что мы можем сказать. Вот что указывал политический термометр на вечере Анны Павловны. Когда Борис, который должен был быть поднесен гостям, вошел в гостиную, уже почти всё общество было в сборе, и разговор, руководимый Анной Павловной, шел о наших дипломатических сношениях с Австрией и о надежде на союз с нею.
Борис в щегольском, адъютантском мундире, возмужавший, свежий и румяный, свободно вошел в гостиную и был отведен, как следовало, для приветствия к тетушке и снова присоединен к общему кружку.
Анна Павловна дала поцеловать ему свою сухую руку, познакомила его с некоторыми незнакомыми ему лицами и каждого шопотом определила ему.
– Le Prince Hyppolite Kouraguine – charmant jeune homme. M r Kroug charge d'affaires de Kopenhague – un esprit profond, и просто: М r Shittoff un homme de beaucoup de merite [Князь Ипполит Курагин, милый молодой человек. Г. Круг, Копенгагенский поверенный в делах, глубокий ум. Г. Шитов, весьма достойный человек] про того, который носил это наименование.
Борис за это время своей службы, благодаря заботам Анны Михайловны, собственным вкусам и свойствам своего сдержанного характера, успел поставить себя в самое выгодное положение по службе. Он находился адъютантом при весьма важном лице, имел весьма важное поручение в Пруссию и только что возвратился оттуда курьером. Он вполне усвоил себе ту понравившуюся ему в Ольмюце неписанную субординацию, по которой прапорщик мог стоять без сравнения выше генерала, и по которой, для успеха на службе, были нужны не усилия на службе, не труды, не храбрость, не постоянство, а нужно было только уменье обращаться с теми, которые вознаграждают за службу, – и он часто сам удивлялся своим быстрым успехам и тому, как другие могли не понимать этого. Вследствие этого открытия его, весь образ жизни его, все отношения с прежними знакомыми, все его планы на будущее – совершенно изменились. Он был не богат, но последние свои деньги он употреблял на то, чтобы быть одетым лучше других; он скорее лишил бы себя многих удовольствий, чем позволил бы себе ехать в дурном экипаже или показаться в старом мундире на улицах Петербурга. Сближался он и искал знакомств только с людьми, которые были выше его, и потому могли быть ему полезны. Он любил Петербург и презирал Москву. Воспоминание о доме Ростовых и о его детской любви к Наташе – было ему неприятно, и он с самого отъезда в армию ни разу не был у Ростовых. В гостиной Анны Павловны, в которой присутствовать он считал за важное повышение по службе, он теперь тотчас же понял свою роль и предоставил Анне Павловне воспользоваться тем интересом, который в нем заключался, внимательно наблюдая каждое лицо и оценивая выгоды и возможности сближения с каждым из них. Он сел на указанное ему место возле красивой Элен, и вслушивался в общий разговор.
– Vienne trouve les bases du traite propose tellement hors d'atteinte, qu'on ne saurait y parvenir meme par une continuite de succes les plus brillants, et elle met en doute les moyens qui pourraient nous les procurer. C'est la phrase authentique du cabinet de Vienne, – говорил датский charge d'affaires. [Вена находит основания предлагаемого договора до того невозможными, что достигнуть их нельзя даже рядом самых блестящих успехов: и она сомневается в средствах, которые могут их нам доставить. Это подлинная фраза венского кабинета, – сказал датский поверенный в делах.]
– C'est le doute qui est flatteur! – сказал l'homme a l'esprit profond, с тонкой улыбкой. [Сомнение лестно! – сказал глубокий ум,]
– Il faut distinguer entre le cabinet de Vienne et l'Empereur d'Autriche, – сказал МorteMariet. – L'Empereur d'Autriche n'a jamais pu penser a une chose pareille, ce n'est que le cabinet qui le dit. [Необходимо различать венский кабинет и австрийского императора. Австрийский император никогда не мог этого думать, это говорит только кабинет.]
– Eh, mon cher vicomte, – вмешалась Анна Павловна, – l'Urope (она почему то выговаривала l'Urope, как особенную тонкость французского языка, которую она могла себе позволить, говоря с французом) l'Urope ne sera jamais notre alliee sincere. [Ах, мой милый виконт, Европа никогда не будет нашей искренней союзницей.]
Вслед за этим Анна Павловна навела разговор на мужество и твердость прусского короля с тем, чтобы ввести в дело Бориса.
Борис внимательно слушал того, кто говорит, ожидая своего череда, но вместе с тем успевал несколько раз оглядываться на свою соседку, красавицу Элен, которая с улыбкой несколько раз встретилась глазами с красивым молодым адъютантом.
Весьма естественно, говоря о положении Пруссии, Анна Павловна попросила Бориса рассказать свое путешествие в Глогау и положение, в котором он нашел прусское войско. Борис, не торопясь, чистым и правильным французским языком, рассказал весьма много интересных подробностей о войсках, о дворе, во всё время своего рассказа старательно избегая заявления своего мнения насчет тех фактов, которые он передавал. На несколько времени Борис завладел общим вниманием, и Анна Павловна чувствовала, что ее угощенье новинкой было принято с удовольствием всеми гостями. Более всех внимания к рассказу Бориса выказала Элен. Она несколько раз спрашивала его о некоторых подробностях его поездки и, казалось, весьма была заинтересована положением прусской армии. Как только он кончил, она с своей обычной улыбкой обратилась к нему:
– Il faut absolument que vous veniez me voir, [Необходимо нужно, чтоб вы приехали повидаться со мною,] – сказала она ему таким тоном, как будто по некоторым соображениям, которые он не мог знать, это было совершенно необходимо.
– Mariedi entre les 8 et 9 heures. Vous me ferez grand plaisir. [Во вторник, между 8 и 9 часами. Вы мне сделаете большое удовольствие.] – Борис обещал исполнить ее желание и хотел вступить с ней в разговор, когда Анна Павловна отозвала его под предлогом тетушки, которая желала его cлышать.
– Вы ведь знаете ее мужа? – сказала Анна Павловна, закрыв глаза и грустным жестом указывая на Элен. – Ах, это такая несчастная и прелестная женщина! Не говорите при ней о нем, пожалуйста не говорите. Ей слишком тяжело!


Когда Борис и Анна Павловна вернулись к общему кружку, разговором в нем завладел князь Ипполит.
Он, выдвинувшись вперед на кресле, сказал: Le Roi de Prusse! [Прусский король!] и сказав это, засмеялся. Все обратились к нему: Le Roi de Prusse? – спросил Ипполит, опять засмеялся и опять спокойно и серьезно уселся в глубине своего кресла. Анна Павловна подождала его немного, но так как Ипполит решительно, казалось, не хотел больше говорить, она начала речь о том, как безбожный Бонапарт похитил в Потсдаме шпагу Фридриха Великого.
– C'est l'epee de Frederic le Grand, que je… [Это шпага Фридриха Великого, которую я…] – начала было она, но Ипполит перебил ее словами:
– Le Roi de Prusse… – и опять, как только к нему обратились, извинился и замолчал. Анна Павловна поморщилась. MorteMariet, приятель Ипполита, решительно обратился к нему:
– Voyons a qui en avez vous avec votre Roi de Prusse? [Ну так что ж о прусском короле?]
Ипполит засмеялся, как будто ему стыдно было своего смеха.
– Non, ce n'est rien, je voulais dire seulement… [Нет, ничего, я только хотел сказать…] (Он намерен был повторить шутку, которую он слышал в Вене, и которую он целый вечер собирался поместить.) Je voulais dire seulement, que nous avons tort de faire la guerre рour le roi de Prusse. [Я только хотел сказать, что мы напрасно воюем pour le roi de Prusse . (Непереводимая игра слов, имеющая значение: «по пустякам».)]
Борис осторожно улыбнулся так, что его улыбка могла быть отнесена к насмешке или к одобрению шутки, смотря по тому, как она будет принята. Все засмеялись.
– Il est tres mauvais, votre jeu de mot, tres spirituel, mais injuste, – грозя сморщенным пальчиком, сказала Анна Павловна. – Nous ne faisons pas la guerre pour le Roi de Prusse, mais pour les bons principes. Ah, le mechant, ce prince Hippolytel [Ваша игра слов не хороша, очень умна, но несправедлива; мы не воюем pour le roi de Prusse (т. e. по пустякам), а за добрые начала. Ах, какой он злой, этот князь Ипполит!] – сказала она.
Разговор не утихал целый вечер, обращаясь преимущественно около политических новостей. В конце вечера он особенно оживился, когда дело зашло о наградах, пожалованных государем.
– Ведь получил же в прошлом году NN табакерку с портретом, – говорил l'homme a l'esprit profond, [человек глубокого ума,] – почему же SS не может получить той же награды?
– Je vous demande pardon, une tabatiere avec le portrait de l'Empereur est une recompense, mais point une distinction, – сказал дипломат, un cadeau plutot. [Извините, табакерка с портретом Императора есть награда, а не отличие; скорее подарок.]
– Il y eu plutot des antecedents, je vous citerai Schwarzenberg. [Были примеры – Шварценберг.]
– C'est impossible, [Это невозможно,] – возразил другой.
– Пари. Le grand cordon, c'est different… [Лента – это другое дело…]
Когда все поднялись, чтоб уезжать, Элен, очень мало говорившая весь вечер, опять обратилась к Борису с просьбой и ласковым, значительным приказанием, чтобы он был у нее во вторник.
– Мне это очень нужно, – сказала она с улыбкой, оглядываясь на Анну Павловну, и Анна Павловна той грустной улыбкой, которая сопровождала ее слова при речи о своей высокой покровительнице, подтвердила желание Элен. Казалось, что в этот вечер из каких то слов, сказанных Борисом о прусском войске, Элен вдруг открыла необходимость видеть его. Она как будто обещала ему, что, когда он приедет во вторник, она объяснит ему эту необходимость.
Приехав во вторник вечером в великолепный салон Элен, Борис не получил ясного объяснения, для чего было ему необходимо приехать. Были другие гости, графиня мало говорила с ним, и только прощаясь, когда он целовал ее руку, она с странным отсутствием улыбки, неожиданно, шопотом, сказала ему: Venez demain diner… le soir. Il faut que vous veniez… Venez. [Приезжайте завтра обедать… вечером. Надо, чтоб вы приехали… Приезжайте.]
В этот свой приезд в Петербург Борис сделался близким человеком в доме графини Безуховой.


Война разгоралась, и театр ее приближался к русским границам. Всюду слышались проклятия врагу рода человеческого Бонапартию; в деревнях собирались ратники и рекруты, и с театра войны приходили разноречивые известия, как всегда ложные и потому различно перетолковываемые.
Жизнь старого князя Болконского, князя Андрея и княжны Марьи во многом изменилась с 1805 года.
В 1806 году старый князь был определен одним из восьми главнокомандующих по ополчению, назначенных тогда по всей России. Старый князь, несмотря на свою старческую слабость, особенно сделавшуюся заметной в тот период времени, когда он считал своего сына убитым, не счел себя вправе отказаться от должности, в которую был определен самим государем, и эта вновь открывшаяся ему деятельность возбудила и укрепила его. Он постоянно бывал в разъездах по трем вверенным ему губерниям; был до педантизма исполнителен в своих обязанностях, строг до жестокости с своими подчиненными, и сам доходил до малейших подробностей дела. Княжна Марья перестала уже брать у своего отца математические уроки, и только по утрам, сопутствуемая кормилицей, с маленьким князем Николаем (как звал его дед) входила в кабинет отца, когда он был дома. Грудной князь Николай жил с кормилицей и няней Савишной на половине покойной княгини, и княжна Марья большую часть дня проводила в детской, заменяя, как умела, мать маленькому племяннику. M lle Bourienne тоже, как казалось, страстно любила мальчика, и княжна Марья, часто лишая себя, уступала своей подруге наслаждение нянчить маленького ангела (как называла она племянника) и играть с ним.
У алтаря лысогорской церкви была часовня над могилой маленькой княгини, и в часовне был поставлен привезенный из Италии мраморный памятник, изображавший ангела, расправившего крылья и готовящегося подняться на небо. У ангела была немного приподнята верхняя губа, как будто он сбирался улыбнуться, и однажды князь Андрей и княжна Марья, выходя из часовни, признались друг другу, что странно, лицо этого ангела напоминало им лицо покойницы. Но что было еще страннее и чего князь Андрей не сказал сестре, было то, что в выражении, которое дал случайно художник лицу ангела, князь Андрей читал те же слова кроткой укоризны, которые он прочел тогда на лице своей мертвой жены: «Ах, зачем вы это со мной сделали?…»
Вскоре после возвращения князя Андрея, старый князь отделил сына и дал ему Богучарово, большое имение, находившееся в 40 верстах от Лысых Гор. Частью по причине тяжелых воспоминаний, связанных с Лысыми Горами, частью потому, что не всегда князь Андрей чувствовал себя в силах переносить характер отца, частью и потому, что ему нужно было уединение, князь Андрей воспользовался Богучаровым, строился там и проводил в нем большую часть времени.
Князь Андрей, после Аустерлицкой кампании, твердо pешил никогда не служить более в военной службе; и когда началась война, и все должны были служить, он, чтобы отделаться от действительной службы, принял должность под начальством отца по сбору ополчения. Старый князь с сыном как бы переменились ролями после кампании 1805 года. Старый князь, возбужденный деятельностью, ожидал всего хорошего от настоящей кампании; князь Андрей, напротив, не участвуя в войне и в тайне души сожалея о том, видел одно дурное.
26 февраля 1807 года, старый князь уехал по округу. Князь Андрей, как и большею частью во время отлучек отца, оставался в Лысых Горах. Маленький Николушка был нездоров уже 4 й день. Кучера, возившие старого князя, вернулись из города и привезли бумаги и письма князю Андрею.
Камердинер с письмами, не застав молодого князя в его кабинете, прошел на половину княжны Марьи; но и там его не было. Камердинеру сказали, что князь пошел в детскую.
– Пожалуйте, ваше сиятельство, Петруша с бумагами пришел, – сказала одна из девушек помощниц няни, обращаясь к князю Андрею, который сидел на маленьком детском стуле и дрожащими руками, хмурясь, капал из стклянки лекарство в рюмку, налитую до половины водой.
– Что такое? – сказал он сердито, и неосторожно дрогнув рукой, перелил из стклянки в рюмку лишнее количество капель. Он выплеснул лекарство из рюмки на пол и опять спросил воды. Девушка подала ему.
В комнате стояла детская кроватка, два сундука, два кресла, стол и детские столик и стульчик, тот, на котором сидел князь Андрей. Окна были завешаны, и на столе горела одна свеча, заставленная переплетенной нотной книгой, так, чтобы свет не падал на кроватку.
– Мой друг, – обращаясь к брату, сказала княжна Марья от кроватки, у которой она стояла, – лучше подождать… после…
– Ах, сделай милость, ты всё говоришь глупости, ты и так всё дожидалась – вот и дождалась, – сказал князь Андрей озлобленным шопотом, видимо желая уколоть сестру.
– Мой друг, право лучше не будить, он заснул, – умоляющим голосом сказала княжна.
Князь Андрей встал и, на цыпочках, с рюмкой подошел к кроватке.
– Или точно не будить? – сказал он нерешительно.
– Как хочешь – право… я думаю… а как хочешь, – сказала княжна Марья, видимо робея и стыдясь того, что ее мнение восторжествовало. Она указала брату на девушку, шопотом вызывавшую его.
Была вторая ночь, что они оба не спали, ухаживая за горевшим в жару мальчиком. Все сутки эти, не доверяя своему домашнему доктору и ожидая того, за которым было послано в город, они предпринимали то то, то другое средство. Измученные бессоницей и встревоженные, они сваливали друг на друга свое горе, упрекали друг друга и ссорились.
– Петруша с бумагами от папеньки, – прошептала девушка. – Князь Андрей вышел.
– Ну что там! – проговорил он сердито, и выслушав словесные приказания от отца и взяв подаваемые конверты и письмо отца, вернулся в детскую.
– Ну что? – спросил князь Андрей.
– Всё то же, подожди ради Бога. Карл Иваныч всегда говорит, что сон всего дороже, – прошептала со вздохом княжна Марья. – Князь Андрей подошел к ребенку и пощупал его. Он горел.
– Убирайтесь вы с вашим Карлом Иванычем! – Он взял рюмку с накапанными в нее каплями и опять подошел.
– Andre, не надо! – сказала княжна Марья.
Но он злобно и вместе страдальчески нахмурился на нее и с рюмкой нагнулся к ребенку. – Ну, я хочу этого, сказал он. – Ну я прошу тебя, дай ему.
Княжна Марья пожала плечами, но покорно взяла рюмку и подозвав няньку, стала давать лекарство. Ребенок закричал и захрипел. Князь Андрей, сморщившись, взяв себя за голову, вышел из комнаты и сел в соседней, на диване.
Письма всё были в его руке. Он машинально открыл их и стал читать. Старый князь, на синей бумаге, своим крупным, продолговатым почерком, употребляя кое где титлы, писал следующее:
«Весьма радостное в сей момент известие получил через курьера, если не вранье. Бенигсен под Эйлау над Буонапартием якобы полную викторию одержал. В Петербурге все ликуют, e наград послано в армию несть конца. Хотя немец, – поздравляю. Корчевский начальник, некий Хандриков, не постигну, что делает: до сих пор не доставлены добавочные люди и провиант. Сейчас скачи туда и скажи, что я с него голову сниму, чтобы через неделю всё было. О Прейсиш Эйлауском сражении получил еще письмо от Петиньки, он участвовал, – всё правда. Когда не мешают кому мешаться не следует, то и немец побил Буонапартия. Сказывают, бежит весьма расстроен. Смотри ж немедля скачи в Корчеву и исполни!»
Князь Андрей вздохнул и распечатал другой конверт. Это было на двух листочках мелко исписанное письмо от Билибина. Он сложил его не читая и опять прочел письмо отца, кончавшееся словами: «скачи в Корчеву и исполни!» «Нет, уж извините, теперь не поеду, пока ребенок не оправится», подумал он и, подошедши к двери, заглянул в детскую. Княжна Марья всё стояла у кроватки и тихо качала ребенка.
«Да, что бишь еще неприятное он пишет? вспоминал князь Андрей содержание отцовского письма. Да. Победу одержали наши над Бонапартом именно тогда, когда я не служу… Да, да, всё подшучивает надо мной… ну, да на здоровье…» и он стал читать французское письмо Билибина. Он читал не понимая половины, читал только для того, чтобы хоть на минуту перестать думать о том, о чем он слишком долго исключительно и мучительно думал.


Билибин находился теперь в качестве дипломатического чиновника при главной квартире армии и хоть и на французском языке, с французскими шуточками и оборотами речи, но с исключительно русским бесстрашием перед самоосуждением и самоосмеянием описывал всю кампанию. Билибин писал, что его дипломатическая discretion [скромность] мучила его, и что он был счастлив, имея в князе Андрее верного корреспондента, которому он мог изливать всю желчь, накопившуюся в нем при виде того, что творится в армии. Письмо это было старое, еще до Прейсиш Эйлауского сражения.
«Depuis nos grands succes d'Austerlitz vous savez, mon cher Prince, писал Билибин, que je ne quitte plus les quartiers generaux. Decidement j'ai pris le gout de la guerre, et bien m'en a pris. Ce que j'ai vu ces trois mois, est incroyable.
«Je commence ab ovo. L'ennemi du genre humain , comme vous savez, s'attaque aux Prussiens. Les Prussiens sont nos fideles allies, qui ne nous ont trompes que trois fois depuis trois ans. Nous prenons fait et cause pour eux. Mais il se trouve que l'ennemi du genre humain ne fait nulle attention a nos beaux discours, et avec sa maniere impolie et sauvage se jette sur les Prussiens sans leur donner le temps de finir la parade commencee, en deux tours de main les rosse a plate couture et va s'installer au palais de Potsdam.
«J'ai le plus vif desir, ecrit le Roi de Prusse a Bonaparte, que V. M. soit accueillie еt traitee dans mon palais d'une maniere, qui lui soit agreable et c'est avec еmpres sement, que j'ai pris a cet effet toutes les mesures que les circonstances me permettaient. Puisse je avoir reussi! Les generaux Prussiens se piquent de politesse envers les Francais et mettent bas les armes aux premieres sommations.
«Le chef de la garienison de Glogau avec dix mille hommes, demande au Roi de Prusse, ce qu'il doit faire s'il est somme de se rendre?… Tout cela est positif.
«Bref, esperant en imposer seulement par notre attitude militaire, il se trouve que nous voila en guerre pour tout de bon, et ce qui plus est, en guerre sur nos frontieres avec et pour le Roi de Prusse . Tout est au grand complet, il ne nous manque qu'une petite chose, c'est le general en chef. Comme il s'est trouve que les succes d'Austerlitz aurant pu etre plus decisifs si le general en chef eut ete moins jeune, on fait la revue des octogenaires et entre Prosorofsky et Kamensky, on donne la preference au derienier. Le general nous arrive en kibik a la maniere Souvoroff, et est accueilli avec des acclamations de joie et de triomphe.
«Le 4 arrive le premier courrier de Petersbourg. On apporte les malles dans le cabinet du Marieechal, qui aime a faire tout par lui meme. On m'appelle pour aider a faire le triage des lettres et prendre celles qui nous sont destinees. Le Marieechal nous regarde faire et attend les paquets qui lui sont adresses. Nous cherchons – il n'y en a point. Le Marieechal devient impatient, se met lui meme a la besogne et trouve des lettres de l'Empereur pour le comte T., pour le prince V. et autres. Alors le voila qui se met dans une de ses coleres bleues. Il jette feu et flamme contre tout le monde, s'empare des lettres, les decachete et lit celles de l'Empereur adressees a d'autres. А, так со мною поступают! Мне доверия нет! А, за мной следить велено, хорошо же; подите вон! Et il ecrit le fameux ordre du jour au general Benigsen