CRISPR

Поделись знанием:
Перейти к: навигация, поиск

CRISPR (от англ. clustered regularly interspaced short palindromic repeats — короткие палиндромные повторы, регулярно расположенные группами[1]) — особые локусы бактерий и архей[2], состоящие из прямых повторяющихся последовательностей, которые разделены уникальными последовательностями (спейсерами). Спейсеры заимствуются из чужеродных генетических элементов, с которыми сталкивалась клетка (бактериофагов, плазмид). РНК, транскрибирующиеся с локусов CRISPR, совместно с ассоциированными белками Cas обеспечивают адаптивный иммунитет за счёт комплементарного связывания РНК с нуклеиновыми кислотами чужеродных элементов и последующего разрушения их белками Cas. Впрочем, к настоящему моменту имеется немало свидетельств участия CRISPR в процессах, не связанных с иммунитетом.

Использование систем CRISPR-Cas[de] для направленного редактирования геномов является перспективным направлением в современной генной инженерии. В настоящее время учёные широко используют подходы, основанные на системах CRISPR-Cas; возможно, в будущем эти подходы будут применять в медицине для лечения наследственных заболеваний[3].





История изучения

Первый локус CRISPR был обнаружен у бактерии Escherichia coli в 1987 году группой японских учёных во главе с Ёсидзуми Исино[en]. Они заметили в геноме этой бактерии повторяющиеся элементы, разделённые неповторяющимися последовательностями (спейсерами)[4]; впрочем, учёные не придали своему наблюдению большого значения. Масштабное изучение CRISPR начал испанский исследователь Франсиско Мохика, в 1993 году обнаруживший повторяющиеся последовательности, разделённые промежутками, в геноме археи Haloferax mediterranei. Он обратил внимание, что повторы в геномах этой археи и E. coli очень похожи по структуре, однако не имеют ничего общего в последовательностях нуклеотидов. По предположению Мохика, столь похожие по структуре повторы, имеющиеся у систематически весьма далёких групп прокариот, должны выполнять какую-то очень важную функцию. Первоначально он назвал новый класс повторов «короткими повторами, регулярно разделёнными промежутками» (англ. short regularly spaced repeats, SRSRs), однако впоследствии, по его предложению, это название было заменено на «короткие палиндромные повторы, регулярно расположенные группами» (англ. clustered regularly interspaced short palindromic repeats, CRISPR). Мохика продолжил поиски CRISPR в геномах других микробов, и к 2000 году он обнаружил их у 20 микроорганизмов, в том числе чумной палочки Yersinia pestis и других патогенов[5]. В 2002 году были открыты гены cas — гены локусов CRISPR, кодирующие белки Cas[6].

Несмотря на обнаружение систем CRISPR-Cas у самых разнообразных прокариот, о функциях CRISPR практически ничего не было известно вплоть до 2005 года. В 2005 году Мохика и его коллеги опубликовали[7] результаты своих новых исследований, в которых было установлено, что спейсеры соответствуют последовательностям из геномов бактериофагов, а также участкам плазмид. Они также обнаружили, что штаммы E. coli, чьи локусы CRISPR содержат спейсер, соответствующий фагу Р1[en], устойчивы к этому фагу, и сделали вывод о связи локусов CRISPR с адаптивным иммунитетом прокариот. В том же году появились публикации[8][9] ещё двух исследовательских групп, которые пришли к такому же заключению[5].

В 2006 году была разработана классификация известных CRISPR и предложен возможный механизм работы основанного на CRISPR адаптивного иммунитета[10]. В 2007 году исследовательской группой во главе с Филиппом Хорватом было окончательно установлено и экспериментально доказано[5] участие CRISPR в обеспечении работы специфичного к последовательностям-мишеням адаптивного иммунитета; одновременно была выявлена ключевая роль белков Cas в этом процессе[11]. За это достижение в 2015 году он был удостоен награды Мэссри[en] (англ. Massry Prize) вместе с другими учёными, внёсшими значительный вклад в изучение CRISPR (Дженнифер Дудна и Эммануэль Шарпентье)[12]. В 2008 году было показано, что для работы системы CRISPR необходима особым образом процессированная CRISPR-РНК (crРНК), а также была продемонстрирована способность системы CRISPR осуществлять ДНК-интерференцию. Интерференция, направляющие РНК и нацеленность против специфических последовательностей ДНК — три открытия 2007—2008 годов, которые положили начало развитию основанных на CRISPR методов генетической инженерии[13].

Ряд последующих важных открытий, касающихся устройства систем CRISPR типа II (в частности, выяснение необходимости для её работы белка Cas9 и дополнительной — помимо crРНК — малой РНК, названной tracrРНК), позволил в 2012 году экспериментально опробовать первую искусственно разработанную систему CRISPR типа II. В начале 2013 года (с интервалом около двух недель друг от друга) несколько групп показали, что искусственные системы CRISPR-Cas могут работать не только в клетках бактерий и in vitro, но и в клетках эукариот[13].

Последующие два с половиной года происходила разработка методов CRISPR и применение этого метода в различных группах организмов. В апреле 2015 года группа учёных из Китая опубликовала результаты своего исследования, в котором с помощью CRISPR-Cas9 были отредактированы геномы человеческих эмбрионов[14]. Однако, точность редактирования в этом эксперименте была очень низка[14], а сам эксперимент был неоднозначно воспринят научным сообществом[15]. В начале 2016 года учёные из США сообщили, что смогли понизить количество ошибок при работе CRISPR-Cas9 почти до нуля[16]. К настоящему моменту CRISPR считают наиболее важным технологическим новшеством в науках о жизни со времён изобретения полимеразной цепной реакции (ПЦР), открытой тремя десятилетиями ранее[13].

Общие принципы

Системы CRISPR-Cas различаются как структурно, так и функционально. Тем не менее, всем системам CRISPR-Cas присущ ряд общих черт[13].

Локусы CRISPR могут выполнять функцию иммунитета только при наличии генов cas, которые обычно располагаются в непосредственной близости от CRISPR. Набор генов cas определяет тип системы CRISPR-Cas. Локусы CRISPR представлены короткими (обычно около 30—40 нуклеотидов длиной) прямыми повторами, которые отделяются друг от друга неповторяющимися спейсерами, произошедшими из ДНК тех чужеродных генетических элементов, с которыми сталкивалась клетка или её предшественники. Длина спейсеров обычно сопоставима с длиной повторов. Перед рядом повторов и спейсеров располагается лидерная последовательность, содержащая, как правило, промотор, с которого начинается однонаправленная транскрипция повторов и спейсеров CRISPR. Спейсеры полностью интегрированы в геном клетки и передаются её потомкам при делении[13]. Стоит отметить, что у бактерий интеграция новых спейсеров в геном сочетается с утратой избыточных и чужеродных генов; поэтому бактериям удаётся избежать значительного увеличения размера генома — в отличие от высших эукариот, у которых повторяющиеся последовательности, произошедшие из экзогенных генетических элементов, составляют существенную часть генома[17].

Кроме структурного сходства, различные системы CRISPR-Cas объединяют три ключевых этапа работы CRISPR-опосредованного иммунитета: приобретение (англ. acquisition), или адаптация (англ. adaptation)[17], экспрессия (англ. expression) и интерференция (англ. interference). На этапе приобретения в CRISPR встраивается новый спейсер, образованный из инородного генетического элемента, проникшего в клетку. На стадии экспрессии происходят транскрипция CRISPR и процессинг коротких CRISPR-РНК (crРНК), нацеленных на определённую мишень. В ходе интерференции рибонуклеопротеиновый комплекс crРНК-Cas распознаёт нуклеиновую кислоту-мишень за счёт комплементарного спаривания оснований мишени с crРНК, после чего разрезает мишень благодаря эндо- и/или экзонуклеазной активности белков Cas[13][18].

Интересно, что работа систем CRISPR-Cas имеет много общих принципиальных моментов с работой иммунной системы млекопитающих. Так, иммунизацию CRISPR (то есть вставку нового спейсера) может вызвать даже дефектный бактериофаг — подобно тому, как иммунный ответ млекопитающих может развиться и при введении убитого патогена[17].

Системы CRISPR-Cas могут передаваться от микроорганизма к микроорганизму с помощью горизонтального переноса генов. Стоит отметить, что противодействие вторжению в бактерию чужеродных генетических элементов не всегда оказывается полезным для бактерии. Например, у бактерии Staphylococcus epidermidis[en] может наблюдаться снижение устойчивости к антибиотикам, обусловленное уничтожением системой CRISPR-Cas тех конъюгативных плазмид, которые обеспечивали эту устойчивость. У Staphylococcus aureus пониженное количество локусов CRISPR приводит к увеличению числа профагов, плазмид и мобильных генетических элементов в клетке, что усиливает вирулентность бактерии. Впрочем, локусы CRISPR-Cas, препятствующие распространению полезных в данных условиях мобильных генетических элементов, могут исчезать[17][19].

Приобретение спейсеров

Поскольку опосредованный CRISPR приобретённый иммунитет закодирован в ДНК, процесс иммунизации включает копирование и вставку чужеродных генетических элементов в CRISPR в качестве новых спейсеров. Спейсеры составляют иммунологическую память, в которой хранится информация о прошлых инфекциях, и именно она лежит в основе ответа на повторное вторжение сходных генетических элементов. Большая часть данных о молекулярных механизмах приобретения новых спейсеров получена при изучении системы CRISPR I типа Escherichia coli и II типа Streptococcus thermophilus[en]. Правильная ориентация и вставка нового спейсера происходит при участии последовательности, расположенной непосредственно выше первого повтора; таким образом, новые спейсеры добавляются к 5'-концу локуса CRISPR. Интеграция нового спейсера в промежуток между лидерной последовательностью и первым повтором осуществляется комплексом Cas1-Cas2-протоспейсер. У некоторых систем CRISPR-Cas в этом процессе участвуют дополнительные белки. При вставке нового спейсера происходит дупликация повтора, за счёт чего сохраняется правильная структура локуса, который должен начинаться с повтора[13][20].

Поскольку спейсеры передаются от предков к потомкам при делении клеток, при наличии схожих спейсеров можно устанавливать филогенетические связи между штаммами, имеющими общие предковые спейсеры, а также штаммами, имеющими новые, недавно приобретённые спейсеры[13].

У систем I и II типа может происходить вставка спейсера лишь от тех инородных элементов, у которых к протоспейсеру прилегает особая последовательность PAM (англ. protospacer adjacent motif — мотив, смежный с протоспейсером)[20]. Кроме того, бактерия должна отличать инородный генетический материал от своего, чтобы не вставить в качестве спейсера фрагмент собственной хромосомы и не нацелить систему CRISPR-Cas на свой геном, что было бы для клетки фатальным. Система CRISPR-Cas I типа E. coli отличает свою ДНК по наличию Chi-сайтов[en] — 8-нуклеотидных мотивов, которые повторяются в её геноме в среднем каждые 5 тысяч пар оснований[21]. Хотя из одного и того же инородного генетического элемента можно образовать множество спейсеров, в генетическом элементе некоторые мотивы оказываются при выборе будущего спейсера более предпочтительными. Вероятно, такие мотивы были зафиксированы в результате естественного отбора, связанного с эффективностью работы спейсеров; так, некоторые спейсеры дают начало crРНК, нацеливающим белки Cas и на частично комплементарные последовательности[13].

Стоит отметить, что при столкновении с одним и тем же фагом разные клетки будут вставлять в качестве спейсера несколько отличающиеся фрагменты его генома, так что большие популяции, имеющие большое разнообразие спейсеров против одного и того же фага, оказывают более эффективное сопротивление: если фаг мутирует так, что один из имеющихся в популяции спейсеров станет неэффкетивен, то другие по-прежнему будут обеспечивать защиту[22].

Экспрессия и образование crРНК

После интеграции в CRISPR частей чужеродных генетических элементов требуется перевести их в форму, способную нацеливать белки Cas на последовательности-мишени для их распознавания и разрушения. Такой формой служит направляющая crРНК, которая содержит уникальную последовательность, комплементарную определённой мишени. Сначала ряд повторов и спейсеров CRISPR транскрибируется в единый длинный транскрипт — пре-crРНК, который далее разрезается на короткие crРНК. Большинство повторов в CRISPR являются палиндромами, поэтому соответствующие им участки пре-crРНК формируют шпильки. Во многих случаях именно эти шпильки распознаются белками Cas, процессирующими пре-crРНК в crРНК[13].

Как правило, транскрипция CRISPR зависит от лидерной последовательности и происходит постоянно, но с низкой скоростью. Однако скорость значительно увеличивается в стрессовых условиях или при столкновении клетки с фагами, обеспечивая ей быструю и эффективную защиту. Промоторные элементы были найдены не только в лидерной последовательности, но и в повторах. Несмотря на то, что за один раз может транскрибироваться весь локус, было показано, что некоторые спейсеры в локусе транскрибируются чаще других — в частности, таковы первые несколько спейсеров, располагающиеся после лидерной последовательности и первого повтора. Действительно, для клетки гораздо более выгодно иметь более сильную защиту от инвазивных элементов, с которыми она сталкивалась в недавнем прошлом, чем от тех, с которыми она встречалась давно[13].

Интерференция

На стадии интерференции crРНК связываются со своими мишенями за счёт спаривания оснований и, таким образом, направляют эндонуклеазы Cas на разрезание и разрушение мишени. Формирование комплекса crРНК и белков Cas обеспечивает эндонуклеолитическое разрушение комплементарных crРНК последовательностей НК. Хотя мишенями, в основном, являются двуцепочечные ДНК (дцДНК), некоторые системы CRISPR-Cas могут разрушать комплементарные одноцепочечные РНК (оцРНК). Системы CRISPR-Cas, распознающие дцДНК, требовательны по отношению к соседним с протоспейсером последовательностям: в частности, в системах типов I и II распознаются только мишени, содержащие мотив PAM (требование наличия PAM может служить для защиты от разрезания системой CRISPR-Cas клеточного генома). У систем, работающих с оцРНК, подобных требований нет. После начальной эндонуклеолитической атаки (внесения разрыва в мишень), производимой Cas, дальнейшее разрушение мишени может происходить под действием других нуклеаз[13].

Разнообразие систем CRISPR-Cas

Все известные системы CRISPR-Cas можно подразделить на два основных класса, 5 типов и 16 подтипов на основании наличия или отсутствия определённых генов cas, строения оперона cas, аминокислотных последовательностей белков Cas и механизмов, обеспечивающих работу CRISPR-опосредованного иммунитета[23][24].

Системы первого класса характеризуются мультибелковыми эффекторными комплексами (Cascade, Cmr, Csm). К этому классу относятся системы типов I, III и IV. Системы типа I являются наиболее распространёнными CRISPR-Cas-системами. Их мишенями служат дцДНК, содержащие мотив PAM, а разрушение осуществляет эффекторный мультибелковый комплекс Cascade, связанный с белком Cas3. Системы типа III часто встречаются у архей и характеризуются мультибелковыми комплексами Csm и Cmr. Они могут распознавать как ДНК, так и РНК, причём для распознавания ДНК нет необходимости в PAM. В системах этого типа разрушение мишеней осуществляет белок Cas10 вместе с эффекторными нуклеазами, а именно Cmr4 у подтипа IIIA (РНКаза, входящая в состав комплекса Cmr) и Csm3 у подтипа IIIB (РНКаза, входящая в комплекс Csm). Системы типа IV довольно редки, их распространение и механизм действия изучены недостаточно[23].

Системы второго класса имеют единственный эффекторный белок. К этому классу относятся типы II и V. Системы типа II активно используются в генной инженерии; для них характерно наличие эндонуклеазы Cas9. В системах этого типа направляющей РНК выступает не одна crРНК, а дуплекс crРНК и дополнительной РНК — tracrРНК. Дуплекс crРНК:tracrРНК направляет никазные[en] домены RuvC и HNH Cas9 для внесения разрывов с образованием тупых концов[en] в ДНК-мишени, которая должна иметь PAM около 3'-конца. Системы типа V редки и характеризуются наличием нуклеазы Cpf1, которую crРНК направляет к ДНК-мишени. Эта RuvC[en]-подобная нуклеаза производит одноцепочечные разрывы с образованием липких концов в дцДНК, рядом с 5'-концом которой находится PAM[23].

В таблице ниже перечислены сигнатурные гены изученных систем CRISPR-Cas, а также указаны функции кодируемых ими белков. Наличие определённых сигнатурных генов служит характеристическим признаком типов и подтипов систем CRISPR-Cas.

Сигнатурные гены подтипов систем CRISPR-Cas
Подтип Сигнатурные гены Функции белковых продуктов[13][23][24][25]
I-A Cas8a2, Csa5 Cas8a2 участвует в интерференции (связывает crРНК и мишень). Csa5 — малая субъединица эффекторного комплекса
I-B Cas8b Участвует в интерференции (распознаёт РАМ)
I-C Cas8c Участвует в интерференции (распознаёт РАМ)
I-D Cas10d Участвует в интерференции (связывает crРНК и мишень и вносит разрыв в мишень)
I-E Cse1, Cse2 Cse1, возможно, взаимодействует с Cas3 и рекрутирует его к эффекторному комплексу[26]. Cse2 — малая субъединица эффекторного комплекса
I-F Csy1, Csy2, Csy3, Cas6f Csy2 и, в меньшей степени, Csy1 и Csy3 участвуют в образовании crРНК[27]. Cas6f — металл-зависимая эндорибонуклеаза, участвующая в образовании crРНК
II-A Csn2 Участвует в приобретении спейсеров, возможно, защищая хромосомную ДНК от внесения двуцепочечных разрывов
II-B Cas9 Содержит два эндонуклеазных домена, которые поодиночке вносят одноцепочечные разрывы, а действуя совместно — двуцепочечный разрыв. Участвует в процессинге crРНК, её накоплении, а также разрушении мишени
II-C Неизвестен
III-A Csm2 Малая субъединица эффекторного комплекса
III-B Cmr5 Малая субъединица эффекторного комплекса
IV Csf1 Участвует в интерференции (распознает РАМ)
V Cpf1 Участвует в интерференции (содержит нуклеазный домен)

Системы I и III типов

Как упоминалось выше, и системы I типа, и системы III типа используют мультибелковые эффекторные комплексы. Их также объединяет использование белка Cas6 для процессинга пре-crРНК (иногда его заменяет ортолог, Cas5). Эти и некоторые другие сходства между системами типов I и III говорят в пользу их происхождения от общего предка[13].

I тип

Системы типа I подразделяют на шесть подтипов (I-A, I-B, I-C, I-D, I-E, I-F) на основании аминокислотных последовательностей белков эффекторного комплекса и взаимного расположения их генов (синтении)[28]. Наиболее изучена система подтипа I-E E. coli[13].

В системах I типа эффекторный комплекс — Cascade — включает Cas6 в качестве интегральной субъединицы, так что процессинг crРНК происходит в пределах эффекторного комплекса, и зрелая crРНК остаётся связанной с ним. После этого комплекс ищет свою последовательность-мишень; при этом он, вероятно, сначала распознаёт её РАМ и лишь после этого проверяет ключевые позиции протоспейсера на комплементарность crРНК. Поскольку в повторах CRISPR нет PAM, геном бактерии, имеющей систему CRISPR-Cas I типа, надёжно защищён от разрушения этой системой. При связывании с Cascade протоспейсер в дцДНК-мишени образует R-петлю[en], для чего необходима отрицательная сверхспирализация; вероятно, это облегчает расплетание ДНК, независимое от нуклеотидтрифосфатов (НТФ). Комплекс Cascade-протоспейсер распознаётся белком Cas3. Cas3 имеет нуклеазный домен HD, а также расплетающий-транслоцирующий домен, для работы которого необходимы НТФ. Cas3 может расплетать дуплексы ДНК:ДНК и ДНК:РНК. Домен НD, как правило, располагается на N-конце Cas3[25]. Домен HD вносит одноцепочечный разрыв в мишень вблизи РАМ, после этого Cas3 отделяется от Cascade и использует свой домен гидролиза нуклеозидтрифосфатов для дальнейшего продвижения вдоль ДНК, по пути внося дополнительные одноцепочечные разрывы[13].

Структура Cascade (свободного и связанного с ДНК) E. coli была визуализирована с околоатомным разрешением. Мишень распознаётся за счёт Уотсон—Криковского спаривания оснований, хотя каждый шестой нуклеотид протоспейсера не комплементарен соответствующему нуклеотиду crРНК. В связи с этим общая геометрия комплекса ДНК с crРНК не соответствует двойной спирали[en]: повторяющиеся полуспиральные витки дуплекса прерываются неспаренными основаниями, что позволяет ДНК перегнуться через crРНК, не обвиваясь вокруг неё. Связывание Cascade с мишенью и родственной ей последовательностью имеет разную кинетику и структурные особенности, что позволяет комплексу различать мишень и близкие к ней последовательности. В первом случае следует интерференция и разрушение мишени, а во втором — вставка нового спейсера. Такая направленная адаптация, в отличие от первичной, «наивной» адаптации, требует работы не только белков Cas1 и Cas2, но и Cas3[13].

Помимо 6 подтипов систем I типа (I-A — I-F) известен ещё один подтип, I-U (U от англ. uncharacterized — неохарактеризованный, так как для него неизвестны механизм разрезания пре-crРНК и архитектура эффекторного комплекса). В отличие от большинства систем I типа, у белка Cas3 в I-U домен HD находится на С-конце[25].

III тип

Системы III типа подразделяются на два подтипа: III-A и III-B. Для них характерно наличие белка Cas10 — самой крупной субъединицы эффекторного комплекса Csm (в случае подтипа III-A) и Cmr (в случае подтипа III-B). Кроме того, все системы III типа кодируют один белок Cas5 и, как правило, несколько паралогичных белков Cas7[25]. Для обоих подтипов характерно использование ортолога Cas6 для процессинга пре-crРНК, хотя процессирующий фермент не всегда является стабильным компонентом соответствующего эффекторного комплекса (как у систем I типа). В 2008 году было показано, что система III-A Staphylococcus epidermidis[en] работает с ДНК-мишенями, а в 2009 году было установлено, что система III-B Pyrococcus furiosus[en] — с РНК. Для успешного распознавания мишеней системам III-A и III-B не требуется наличие мотива РАМ[13].

Дальнейшее изучение систем III типа обнаружило новые загадки субстратной специфичности подтипов III-A и III-B. Так, выяснилось, что система III-A S. epidermidis может работать только с транскрибирующимися протоспейсерами. Кроме того, оказалось, что комплексы Csm S. thermophilus и Thermus thermophilus имеют скрытую РНК-деградирующую активность, причём они вносят разрывы в РНК через каждые 6 нуклеотидов. Такая же активность была показана и для комплексов Cmr. Система III-A S. epidermidis не только разрушает синтезирующиеся транскрипты, но и разрезает ДНК-мишень зависимым от транскрипции образом за счёт специфических аминокислотных остатков Cas10, которые не связаны с распознаванием мишени. Гидролиз РНК, опосредуемый комплексами Csm и Cmr, катализируется не белком Cas10, а субъединицами Csm3 и Cmr4, соответственно. Таким образом, система III-A может разрушать как ДНК, так и РНК; предполагается, что хорошо описанная РНК-деградирующая активность систем III-B дополняется способностью разрушать ДНК[13].

Поскольку системы III типа не требуют наличия РАМ у мишеней, в их случае должен существовать другой, нежели у систем I, механизм различения своей дцДНК и чужой. В случае комплекса Csm crРНК комплементарна не только спейсеру CRISPR, но и прилежащему повтору. Таким образом, при связывании с молекулой-мишенью crРНК будет связываться только с протоспейсером, а при связывании с ДНК клетки — ещё и с соседним повтором, на основании чего система III может отличить ДНК клетки от чужеродной. Интересно, что в системах типа III ДНК разрезается очень близко к местам, где соответствующие основания crРНК и ДНК-мишени не спарены. О механизмах приобретения новых спейсеров в системах типа III практически ничего не известно[13].

Кроме обычно выделяемых подтипов III-A и III-B, в 2015 году было предложено выделять также подтипы III-C и III-D, встречающиеся у некоторых архей. В системах III типа у белка Cas10 наблюдается инактивация циклазного[en] домена; кроме того, его аминокислотная последовательность значительно отличается от таковой у Cas10 систем III-A и III-B. В системах III-D у Cas10 отсутствует домен HD; кроме того, имеется уникальный ген csx10, похожий на cas5. И у систем III-C, и у систем III-D отсутствуют гены cas1 и cas2[25].

В феврале 2016 года появились сведения, что у некоторых бактерий с системами CRISPR-Cas III типа (например, морской бактерии Marinomonas mediterranea) вместо обычного белка Cas1 функционирует химерный белок Cas1-RT, сшитый с обратной транскриптазой. Благодаря наличию такого белка бактерия может интегрировать в свой геном спейсеры, образованные от геномов патогенов с РНК-геномами посредством обратной транскрипции[29].

Системы II типа

Системы CRISPR-Cas II типа стоят особняком из-за своей необычной генетической основы и молекулярных механизмов. В частности, мультибелковые комплексы, осуществляющие процессинг crРНК в системах типов I и III, в системах типа II заменены единственным белком — Cas9, который принимает участие во всех трёх фундаментальных этапах работы этой системы. Таким образом, системы II типа — наиболее простой тип системы CRISPR-Cas[25]. Более того, в биогенезе crРНК принимают участие дополнительные элементы, уникальные для систем II типа. Системы II типа встречаются только у бактерий и среди систем типов I, II и III являются самыми малораспространёнными. Тем не менее, именно системы II типа нашли применение в качестве средства для редактирования геномов[13].

Среди систем II типа на основании наличия и последовательностей ассоциированных генов cas выделяют три подтипа: II-A, II-B и II-C. Помимо генов cas1[en] и cas2, присущих всем системам типов I—III, системы типа II имеют дополнительный ген cas9, который кодирует эндонуклеазу Cas9. Cas9 принимает участие в приобретении новых спейсеров, накоплении crРНК и интерференции. Помимо этого, системы II-A содержат ген csn2, чей белковый продукт принимает участие в приобретении спейсеров. В системах II-B этот ген заменён геном cas4, а системы II-C не имеют ни csn2, ни cas4. Длина Cas9 варьирует в разных подтипах, причём для систем II-C, как правило, характерны самые короткие ортологи[13]. Коровая часть Cas9, которую составляют нуклеазный домен и характерный для этого белка обогащённый аргинином кластер, вероятнее всего, кодируется генами, произошедшими от мобильных генетических элементов, никак не связанных с CRISPR. Принимая во внимание значительное сходство в последовательностях аминокислот между Cas9 и его гомологами, которые не связаны с системами CRISPR-Cas, Cas9 нельзя рассматривать как в полном смысле сигнатурный белок систем II типа. Тем не менее, его можно считать отличительным признаком этих систем[25].

Биогенез crРНК в системах II типа имеет ряд уникальных особенностей. В частности, для него необходим процессинг РНКазой III и связывание с пре-crРНК особых транс-кодируемых CRISPR-РНК (tracrРНК). В составе tracrРНК присутствует участок, комплементарный той области crРНК, которая была транскрибирована с повтора CRISPR. В ходе процессинга crРНК tracrРНК связывается с ещё не вырезанными crРНК в составе пре-crРНК, благодаря чему образуются зрелые crРНК. Получающийся в результате зрелый комплекс crРНК-tracrРНК-Cas9 содержит короткую crРНК, у которой 20—24 нуклеотида комплементарны 3'-концу спейсера и 20—24 нуклеотида комплементарны 5'-концу повтора. Первый этап процессинга пре-crРНК происходит в областях, комплементарных повторам CRISPR; в результате образуется 3'-конец crРНК. Последующая стадия обрезания 5'-конца неизвестными нуклеазами происходит внутри последовательностей, соответствующих спейсерам CRIPSR. Для накопления crРНК в клетках необходим белок Cas9, хотя неизвестно, вызвано ли это участием Cas9 в процессинге crРНК или стабилизацией crРНК при помощи Cas9 после процессинга, или же и тем, и другим[13].

Комплекс crРНК-tracrРНК-Cas9 распознаёт ДНК-мишени, комплементарные crРНК и содержащие РАМ. Как и в системах I типа, отсутствие РАМ в локусах CRISPR предохраняет клеточную ДНК от разрезания. Сначала Cas9 распознаёт РАМ, а после этого прилегающая ДНК проверяется на комплементарность crРНК. Разрезание ДНК-мишени осуществляется путём внесения двух одноцепочечных разрывов мотивами RuvC и HNH белка Cas9, в результате чего образуется двуцепочечный разрыв с тупыми концами в ближнем к РАМ конце протоспейсера в R-петле, за три нуклеотида до РАМ[13].

В системах III-C (в частности, в CRISPR-Cas системе Neisseria meningitidis) был описан альтернативный механизм биогенеза crРНК, который использует промоторы, располагающиеся в повторах CRISPR. Альтернативное направление транскрипции может происходить даже без участия РНКазы III[13].

Функции вне иммунитета прокариот

Несмотря на то, что функции систем CRISPR-Cas, как правило, связывают с адаптивным иммунитетом прокариот, имеется немало свидетельств участия этих систем и в совершенно других процессах, не связанных с защитой от чужеродных генетических элементов (например, в регуляции группового поведения, вирулентности, репарации ДНК и эволюции генома[en]). Ниже кратко перечислены некоторые известные примеры участия CRISPR-Cas в процессах, не связанных с иммунитетом[30].

Функции CRISPR, не связанные с адаптивным иммунитетом[30]
Функция Тип системы Механизм Участие генов cas Участие CRISPR Вид Экспериментальное подтверждение
Регуляция генов III-B Разрушение комплементарной мРНК Да Да Pyrococcus furiosus Нет
Гены регуляции
группового поведения
I-F

I-C
На основании
частичной комплементарности
Неизвестен
Да

Да
Да

Неизвестно
Pseudomonas aeruginosa

Myxococcus xanthus
Да

Да
Гены регуляции
вирулентности
II-C

II-B


II-B
CRISPR неизвестного типа
Cas9-зависимая модификация
поверхности клеток
Cas9-опосредованная отрицательная
регуляция образования бактериального липопротеина
Неизвестен
Регуляция оперона feoAB
за счёт частичной комплементарности
Да

Да

Да
Нет
Нет

Нет

Нет
Да
Campylobacter jejuni[en]

Francisella novicida[en]

Legionella pneumophila
Listeria monocytogenes[en]
Да

Да

Да
Да
Ремоделирование генома I-F Удаление участков генома
посредством самонацеливания
Да Да Pectobacterium atrosepticum[en] Да
Репарация ДНК I-E Репарация ДНК при
помощи Cas1
Да Нет Escherichia coli Да
Конкуренция между
мобильными генетическими элементами (МГЭ)
I-F Специфичное нацеливание на
МГЭ-конкурентов
Да Да Фаг ICP1
Vibrio cholerae
Да
Покой клеток Не определён Cas1 и Cas2 функционируют аналогично
системам токсин-антитоксин,
запуская покой и последующую смерть
клеток при фаговой инфекции
Да Нет Не определён Нет

Примером может служить система CRISPR-Cas у хищной дельта-протеобактерии Myxococcus xanthus, повсеместно распространённой в почве. Её жизненный цикл включает стадии образования плодового тела и споруляции, в ходе которого индивидуальные клетки собираются в аггрегаты и дифференцируются в миксоспоры, образуя плодовое тело. Отделяясь, миксоспоры превращаются в отдельные бактериальные клетки, причём этот процесс жёстко регулируется сигналами чувства кворума и внутриклеточными сигнальными каскадами. Система CRISPR-Cas данной бактерии относится к I-C типу и включает 7 генов Cas и локус CRISPR, содержащий 22 спейсера. При нехватке питательных веществ система запускает синтез в клетках А-сигнала, состоящего из аминокислот и пептидов, который активирует транскрипцию гена fruA (оперон cas тоже может активировать этот ген через белок Cas8c). При контакте клеток друг с другом в них образуется С-сигнал, кодируемый геном csgA, который тоже активирует fruA, способствующий затем экспрессии генов cas. Таким образом, гены cas входят в состав петли положительной обратной связи вместе с геном fruA и принимают участие в образовании плодового тела и споруляции бактерии[30].

Системы CRISPR-Cas могут быть задействованы в регуляции вирулентности у патогенных бактерий. Например, у Francisella novicida[en] имеется система II типа, состоящая из четырёх генов cas и обратно ориентированного локуса CRISPR, содержащего 13 спейсеров. Она отрицательно регулирует экспрессию бактериального липопротеина (BLP) — поверхностного фактора вирулентности. Именно он распознаётся Toll-подобными рецепторами 2 иммунной системы хозяина, поэтому для успешного развития инфекции необходима отрицательная регуляция BLP. Предполагается, что комплекс Cas9, малой crРНК (scaРНК) и tracrРНК связывается с транскриптом blp и разрушает его по неизвестному механизму. Системы CRISPR-Cas задействованы в регуляции вирулентности у таких бактерий, как Campylobacter jejuni, Neisseria meningitidis, Legionella pneumophila (в случае этой бактерии в регуляции вирулентности из всех генов cas участвует только cas2), Listeria monocytogenes (см. табл.)[30].

У многих бактерий системы CRISPR-Cas используются для регуляции собственных генов, не связанных с вирулентностью. В частности, у Pseudomonas aeruginosa система типа I-F участвует в регуляции генов, связанных с образованием биоплёнки. Кроме того, имеются предположения, что белки Cas1 и Cas2 могут обеспечивать защиту от бактериофагов, действуя аналогично системам токсин-антитоксин, то есть вызывая покой и последующую гибель инфицированных клеток. Имеются свидетельства участия систем CRISPR-Cas в репарации ДНК. Так, Cas1, входящий в состав системы типа I-E E. coli, может физически взаимодействовать с ферментами репарации и рекомбинации. Делеция гена cas1 или ассоциированных локусов CRISPR приводила к усилению чувствительности к агентам, повреждающим ДНК, и нарушениям в разделении хромосом при делении[30].

Системы CRISPR-Cas, нацеленные на бактериальную хромосому, могут играть важную роль в геномных перестройках у бактерий и обеспечивать генетические основы эволюции — несмотря на то, что в большинстве случаев самонацеленные белки Cas приводят к гибели клетки. Было показано, что у бактерии Pectobacterium atrosepticum crРНК, нацеленные на хромосомные островки[en], приобретённые посредством горизонтального переноса генов, обычно приводят к гибели клетки, но у некоторых выживших клеток наблюдались масштабные хромосомные делеции, в том числе полное удаление островка-мишени длиной около 100 пар оснований. В этих редких случаях делеции увеличивали общую приспособленность мутантов[30].

Интересно, что системы CRISPR-Cas имеются не только у прокариот, но также у бактериофагов и ряда других мобильных генетических элементов (МГЭ). Возможно, данное обстоятельство связано с распространением систем CRISPR-Cas у бактерий и архей путём горизонтального переноса генов. Системы CRISPR-Cas таких элементов могут быть нацелены на другие МГЭ, обеспечивая механизмы конкуренции между МГЭ. МГЭ, несущие системы CRISPR-Cas, могут конкурировать с островками патогенности[en] бактерий, которые вырезаются из генома при фаговой инфекции и передаются другим бактериям в капсидах фага. Используя фаговые капсиды для собственной передачи, островки патогенности могут полностью блокировать размножение фагов. Примером может служить система CRISPR-Cas фага ICP1 Vibrio cholerae, которая относится к типу I-F и имеет 2 гена cas и 9 спейсеров (по-видимому, она гомологична системе Yersinia pestis). Один из спейсеров комплементарен островку патогенности Vibrio cholerae, так что фаг может конкурировать с островками патогенности за капсиды. Кроме того, система CRISPR-Cas ICP1 может приобретать новые спейсеры, что даёт фагу возможность коэволюционировать вместе с бактерией-хозяином[30][31].

В 2016 году появились сведения о том, что у крупных ядерно-цитоплазматических ДНК-содержащих вирусов имеется защитная система, напоминающая CRISPR и предназначенная для защиты от вирофагов (в частности, вирофага Zamilon у мимивируса). Эта защитная система получила название MIMIVIRE[32].

Противодействие CRISPR

Установлено, что в ответ на распространение определённых спейсеров CRISPR в популяции бактерий (и, следовательно, распространение устойчивости к соответствующим бактериофагам) бактериофаги усиленно мутируют и даже утрачивают те участки генома, которые наиболее часто служат мишенями систем CRISPR-Cas и интегрируются в бактериальный геном в качестве спейсеров[17].

Некоторые фаги кодируют особые белки (анти-CRISPR белки, Acr), которые мешают работе CRISPR-Cas систем и способствуют развитию инфекции. Анализ фагов Pseudomonas aeruginosa позволил выделить несколько разновидностей Acr-белков. Первоначально белки Acr были описаны у штаммов P. aeruginosa, несущих профаги в своих хромосомах. Хотя у большинства из этих штаммов имелась активная система CRISPR-Cas типа I-F, у некоторых штаммов система оставалось неактивной даже при наличии спейсеров, нацеленных на фаги. Молекулярный анализ штаммов с неактивными системами выявил ряд малых белков, кодируемых фагом, которые были ответственны за развитие чувствительного к фагам фенотипа. Белки Acr могут подавлять работу систем CRISPR-Cas различными способами, в частности (в случае систем типа I-F) — через связывание с комплексом Cascade и блокирование связывания им ДНК-мишени или через связывание с белками Cas, приводящее к утрате ими нуклеазной активности[33].

Известен белок Acr, который препятствует связыванию хеликазы-нуклеазы Cas3 с комплексом crРНК и других белков Cas, связавшимся со своей ДНК-мишенью. Поскольку связанный с ДНК комплекс Cas и crРНК не даёт возможности связаться с ДНК транскрипционному аппарату, этот белок Acr превращает комплекс crРНК и Cas в репрессор транскрипции. По состоянию на октябрь 2015 года это — первый известный пример регуляции активности системы CRISPR-Cas при помощи белкового фактора[34]. Белки Acr могут проявлять строгую специфичность относительно системы CRISPR-Cas; в частности, белки, блокировавшие систему I-F P. aeruginosa, не оказывали никакого эффекта на систему I-E P. aeruginosa или I-F E. coli. Впрочем, некоторые фаги, имеющие гены-супрессоры системы I-F P. aeruginosa, кодировали также небольшие супрессорные белки, подавляющие систему I-E P. aeruginosa, но не I-E E. coli[33].

Появление у фагов защитных механизмов против CRISPR-интерференции считают результатом длительная коэволюции фагов и их хозяев[18].

Эволюционное значение

По мнению Е. В. Кунина, работу систем CRISPR-Cas можно рассматривать как эволюционный процесс, удовлетворяющий эволюционному сценарию Ламарка, а именно, следующим критериям:

  • Геномные изменения в локусах CRISPR (вставка новых спейсеров) вызываются воздействием среды (точнее, чужеродных генетических элементов).
  • Изменения ограничены специфическими геномными локусами.
  • Изменения обеспечивают адаптацию к конкретному воздействию (к конкретному чужеродному генетическому элементу)[35][36].

Впрочем, такой взгляд на CRISPR подвергается критике. По мнению А. Висса, соответствие CRISPR-Cas ламарковским критериям носит лишь поверхностный характер[35].

Стоит отметить, что системы CRISPR-Cas проявляют некоторые свойства эволюции по Дарвину — в частности, выглядящее на уровне популяции случайным приобретение спейсеров, вслед за чем следует отбор выживающих клонов с наилучшей приспособленностью[17].

Идентификация

Системы CRISPR-Cas широко распространены среди бактерий и архей[37], и их характерной чертой является чередование повторяющихся последовательностей и спейсеров. Благодаря этой особенности локусы CRIPSR довольно просто найти в длинных последовательностях ДНК, поскольку с увеличением количества повторов в локусе уменьшается вероятность ложноположительного нахождения. Среди программ, использующихся для нахождения CRISPR на основе нахождения в длинных последовательностях повторов, разделённых промежутками, можно назвать CRT[38], PILER-CR[39] и CRISPRfinder[40].

Нахождение CRISPR в метагеномных данных более сложно: при помощи стандартных алгоритмов локусы CRISPR собрать нельзя из-за наличия множества повторов, а также вариаций, специфичных для штамма. Для увеличения количества локусов CRISPR и последующего анализа содержимого спейсеров можно использовать полимеразную цепную реакцию, однако этот метод даёт информацию только о конкретном локусе CRISPR и применим только к организмам, геномы которых доступны в базах данных (чтобы можно было создать подходящие праймеры)[41][42][43][44][45].

Применение в генной инженерии

До открытия функций и механизмов действия систем CRIPR-Cas в качестве методов для локус-специфичного редактирования генома наиболее интенсивно разрабатывались методы, основанные на использовании нуклеаз, содержащих цинковые пальцы[en] (англ. Zinc-finger nucleases, ZFNs), а также эндонуклеазы TAL[en] (англ. Transcription activator-like effector nuclease, TALEN). Эти методы довольно трудоёмки, не очень эффективны и дорогостоящи: для каждого нового локуса-мишени требуется разработка, экспрессия и проверка совершенно новой пары полипептидов, что значительно ограничивает область применения этих методов[13][46].

Однако в 2012—2013 годах в генной инженерии появились принципиально новые методы манипулирования генетическим материалом, основанные на применении систем CRISPR-Cas. Данные методы пригодны для целенаправленного редактирования геномов как прокариот, так и эукариот (хотя последние не имеют собственных систем CRISPR-Cas, однако выяснилось, что искусственно введённые в эукариотную клетку элементы системы CRISPR-Cas бактериального происхождения способны функционировать и в новой среде). При этом современные технологии CRISPR-Cas используют белок Cas9, одинаковый для всех локусов-мишеней, а специфичность действия определяется не белком, а crРНК. Методы, основанные на ZFN и TALEN, используются и по сей день и даже являются предпочтительными для клинических исследований, однако простота, эффективность и экономичность методов, использующих систему CRISPR-Cas9, вывели их на первое место среди методов для направленного редактирования генома, а также связывания с ДНК[13][46].

Методы, основанные на CRISPR-Cas9, близки к естественным механизмам действия этих систем: для распознавания последовательности-мишени, которая располагается рядом с PAM, используется РНК, и направляемая ею нуклеаза Cas9 производит двуцепочечный разрыв в сайте-мишени. При редактировании генома эукариот, впрочем, результатом работы CRISPR-Cas9 является не разрушение всей молекулы ДНК, а репарация двуцепочечного разрыва, произведённого Cas9. Репарация может проводиться как за счёт негомологичного соединения концов (англ. non-homologous end joining, NHEJ), так и путём гомологичной рекомбинации. В результате репарации, сопровождавшейся негомологичным соединением концов, часто возникают небольшие вставки или делеции, способные разрушить рамку считывания белок-кодирующих генов, что приводит к утрате функции гена-мишени. Вызвав множество двуцепочечных разрывов, можно добиться появления крупных делеций и даже инверсий[13].

Репарация путём гомологичной рекомбинации, напротив, подразумевает замену удалённой последовательности новой последовательностью, комплементарной матрице для репарации, которую создаёт сам исследователь. Таким образом, гомологичная рекомбинация может использоваться для удаления нежелательных мутаций, создания новых аллелей, вставки или слияния функциональных доменов. Кроме того, мутационная инактивация доменов RuvC или HNH Cas9 превращает этот белок в РНК-направляемую никазу, производящую не двуцепочечные, а одноцепочечные разрывы. Инактивация обоих доменов превращает Cas9 в направляемый РНК ДНК-связывающий белок[en], не разрезающий мишень. В этом случае к ДНК-связывающему домену можно присоединить домен с другими функциями, что, в свою очередь, может вызвать различные изменения в локусе-мишени: активацию или репрессию транскрипции, модификацию хроматина, усиление образования петель и многие другие. Кроме того, инактивированная форма Cas9 (dCas9, «мёртвая» Cas9) служит основой для новых исследовательских приёмов — например, визуализации посредством флуоресценции или создания меток для последующей физической изоляции локусов[13].

Несмотря на эффективность использования систем CRISPR-Cas, происхождение Cas9 накладывает некоторые ограничения на выбор ДНК-мишеней: например при использовании Cas9 Streptococcus pyogenes в качестве мишеней можно выбирать только последовательности, за которыми следует PAM, а именно 5'-NGG (где N — любой нуклеотид). Впрочем, необходимость в PAM не накладывает серьёзных ограничений на применение систем CRISPR-Cas9: в человеческом геноме такие последовательности встречаются почти каждые 8—12 нуклеотидов. Перед использованием в генетических конструкциях ген Cas9 должен быть предварительно оптимизирован по используемым кодонам в соответствии с организмом, геном которого предполагается модифицировать[47]: ген cas9 S. pyogenes отличается низким GC-составом (35 %), и для организмов, чьи геномы имеют высокий GC-состав, может быть необходима оптимизация кодонов Cas9[48].

В настоящий момент для редактирования генома применяют систему CRISPR-Cas II типа, причём чаще всего используется белок SpyCas9 (нуклеаза Cas9 бактерии S. pyogenes); однако ведётся разработка альтернативных белков Cas9, которые позволят увеличить область применения CRISPR-Cas. Например, укороченные формы Cas9 могут распознавать различные последовательности PAM. Хотя редактирование генома можно эффективно осуществлять с помощью crРНК и tracrРНК, транскрибируемых отдельно, разработка технологии единой направляющей РНК (sgРНК) позволила упростить эту систему. В этом случае четырёхкомпонентная система РНКаза III:crРНК:tracrРНК:Cas9 заменяется двухкомпонентной системой sgРНК:Cas9. В настоящее время sgРНК используется значительно чаще, чем раздельные crРНК и tracrРНК. Наконец, ведутся разработки по улучшению специфичности Cas9 и уменьшению побочных эффектов[13][46]. В начале 2016 года были опубликованы результаты работы американских исследователей, которым удалось снизить количество ошибок практически до нуля[16].

Доставку sgРНК и Cas9 в клетки-мишени обеспечивают различными способами. Например, для этого можно использовать плазмиды, кодирующие sgРНК и Cas9, и трансфецировать (или трансформировать, в случае прокариот) ими клетки. Такие плазмиды можно доставлять в клетки при помощи электропорации[49]. В некоторых случаях оказывается более удобным использовать плазмиды, кодирующие Cas9, а РНК доставлять в виде наработанных с помощью ПЦР ампликонов[en][47].

В 2015 году был предложен новый способ доставки sgРНК и Cas9 в клетку внутри особых наноклубков. Такой наноклубок состоит из одной, плотно обвитой цепи ДНК, один из участков которой комплементарен переносимой sgРНК; таким образом комплекс sgРНК:Саs9 закрепляется внутри клубка. Более того, наноклубок способен к самосборке. К одному наноклубку можно присоединить множество различных комплексов sgРНК:Cas9. При контакте с клеткой наноклубок попадает в эндосому, однако особый полимер, покрывающий наноклубок, обеспечивает разрушение эндосомы и даёт возможность sgРНК:Cas9 достичь ядра[50].

Модификации методов

Для направленного редактирования генома эукариотических клеток используют не только Cas9 S. pyogenes, но и Cas9 Streptococcus thermophilus, Neisseria meningitidis[51][52], а также Cas9 из Staphylococcus aureus (SaCas9), которая на 25 % меньше по размерам, чем SpyCas9, что позволяет упаковывать её в аденоассоциированный вирус (AAV) для доставки вектора в клетки живого организма в качестве терапевтического средства[53].

Широкое применение нашла неспособная к разрезанию ДНК форма Cas9 (dCas9). Использование dCas9, сшитой с флуоресцентным белком, лежит в основе нового метода CASFISH (флуоресцентной гибридизации in situ, опосредуемой CRISPR-Cas9), который позволяет флуоресцентно метить локусы-мишени[54]. С помощью такой dCas9 можно отслеживать длину теломер, а также наблюдать за динамикой определённых локусов в ходе клеточного цикла[55].

Форму dCas9 можно использовать для подавления транскрипции гена-мишени (в случае, когда она связывается с последним в области промотора, регуляторных областей или начала кодирующей области); кроме того, для подавления транскрипции к dCas9 может быть пришит репрессорный пептид. Напротив, dCas9, сшитая с белками-активаторами транскрипции (факторами транскрипции и эффекторами[56]), может активировать транскрипцию гена-мишени. Кроме того, к dCas9 можно пришивать искусственные эндонуклеазы рестрикции, а также ферменты, модифицирующие эпигеном[en] (ДНК-метилтрансферазы, гистонацетилтрансферазы) и регулирующие за счёт этого активность генов-мишеней[57][58][59]. В 2016 году удалось перепрограммировать мышиные эмбриональные стволовые клетки в две внезародышевые линии (трофобласт и клетки внезародышевой энтодермы), активируя гены Cdx2[en] и Gata6[en] с помощью CRISPR-опосредованных активаторов[60].

Далее, dCas9 может быть сшита с мономером эндонуклеазы FokI[en], функционирующей в виде димеров. Димеры FokI могут вносить двуцепочечные разрывы в последовательности-мишени. Для направления dCas9, сшитой с мономером FokI, используются две sgРНК, что значительно увеличивает точность системы. Когда два мономера, каждый из которых направляем своей sgРНК, располагаются на расстоянии около 30 пар оснований друг от друга, то FokI димеризуется и вносит двуцепочечный разрыв[61].

Для очистки локусов, связанных с sgРНК, можно использовать dCas9, несущую определённые эпитопы. Фактически этот метод представляет собой особый вариант иммунопреципитации хроматина[en][62].

Найдены аналоги Cas9, способные расщеплять вместо ДНК молекулы РНК. Применение этих белков позволит редактировать или избирательно подавлять активность микроРНК[63][64]. Cas9 Francisella novicida (FnCas9) может быть перепрограммирована так, чтобы быть нацеленной на РНК-геном вируса гепатита C, что приводит к подавлению жизненного цикла вируса в клетках эукариот. На основе этой системы можно создать сотни средств против различных вирусов[65].

Осенью 2015 года был предложен новый метод, альтернативный CRISPR-Cas9 — CRISPR-Cpf1[en]. Cpf1 — эндонуклеаза, являющаяся эффекторным белком систем CRISPR-Cas V типа. Она мельче, чем Cas9, а для её функционирования нужна только crРНК, но не tracrРНК. В связи с этим, возможно, в некоторых случаях метод CRISPR-Cpf1 будет удобнее метода CRISPR-Cas9[66].

В 2015 году был предложен также новый метод самоклонирующихся CRISPR (англ. self-cloning CRISPR). В этом случае в клетки вводят плазмиду, содержащую самоклонирующуюся палиндромную sgРНК, а также короткую двуцепочечную ДНК, которая содержит последовательность, кодирующую требуемую sgРНК. Когда плазмида транскрибируется, образующаяся sgРНК в комплексе с Cas9 комплементарно связывается с последовательностью в плазмиде, кодирующей эту sgРНК. Cas9 вносит двуцепочечный разрыв, который репарируется путём гомологичной рекомбинации с использованием введённой двуцепочечной ДНК в качестве матрицы; в итоге плазмида вновь содержит последовательность, кодирующую требуемую sgРНК. В отличие от стандартного метода CRISPR, для которого требуется длительная и трудоёмкая наработка специальных плазмид для каждого нового локуса-мишени, метод самоклонирующихся CRISPR позволяет сократить время эксперимента с шести дней до трёх часов и уменьшить его стоимость в шесть раз[67].

Биотехнологическое и медицинское значение

В настоящее время методы CRISPR-Cas успешно применяются в генной инженерии самых разных организмов: как многоклеточных и одноклеточных (дрожжи) эукариот, так и прокариот[48][68]. Применение CRISPR-Cas у микроорганизмов позволяет модифицировать их метаболические пути, что открывает возможности для развития новых биотехнологических стратегий[69]. Кроме того, важное значение для биотехнологии имеет создание штаммов технологически важных бактерий, устойчивых к различным фагам за счёт CRISPR-Cas[17].

Разработаны методы редактирования геномов с помощью CRISPR-Cas для модельных организмов (например, мышей[70], плодовой мушки Drosophila melanogaster[71], нематоды Caenorhabditis elegans[72] и других). Такие методы применялись для редактирования генома нитчатого гриба Aspergillus oryzae[en], который используют в промышленности для сбраживания сои[73]. Ведутся работы по редактированию геномов с помощью CRISPR-Cas у крупного рогатого скота[74], свиней[75] и других животных, имеющих важное хозяйственное значение. В ноябре 2015 года были опубликованы результаты эксперимента, в ходе которого при помощи технологии CRISPR-Cas в геноме свиньи были разом инактивированы 62 эндогенных ретровируса. Авторы исследования надеются, что благодаря этим результатам в будущем станет возможной ксенотрансплантация органов от свиньи к человеку[76]. Наконец, мутагенез с использованием CRISPR-Cas может использоваться в борьбе с инвазивными видами (например, инвазивной мухой Drosophila suzukii[en])[77].

Технология CRISPR-Cas успешно применяется в генной инженерии растений[78], в том числе декоративных растений (например, петунии[79]) и многих важных сельскохозяйственных культур: риса[80], сои[81], пшеницы, сорго, кукурузы, томата[82] и апельсина[83]. Исследуются возможности внедрения систем CRISPR-Cas в культурные растения для создания противовирусного иммунитета[84].

Методы, основанные на CRISPR-Cas, могут найти применение и в медицине для лечения самых разнообразных заболеваний: вирусных (в том числе ВИЧ-инфекции[85]), онкологических[86][87][88], а также наследственных расстройств[89] — таких, как синдром Дауна, серповидно-клеточная анемия[90], пигментный ретинит[91]. В 2013 году появилась публикация[92] с сообщением о том, что исследователи сумели отредактировать аномальный ген в стволовых клетках пациента, больного муковисцидозом. Предполагается, что такие клетки с «отремонтированным» геномом можно трансплантировать в организм больного, где они смогут заменить больные клетки и выполнять необходимые функции[46]. Исследователи полагают, что редактирование генома малярийного комара с помощью CRISPR-Cas способно помочь в борьбе с малярией[93].

Методы CRISPR-Cas показали себя эффективными при манипуляциях с локусом PRPN, кодирующим прионный белок, ответственный за ряд нейродегенеративных заболеваний человека и других млекопитающих[94].

Линии клеток, модифицированных при помощи CRISPR-Cas, могут использоваться в качестве моделей различных заболеваний человека. Например, при помощи CRISPR-Cas из линии плюрипотентных клеток человека были получены клетки с мутациями, соответствующими двум заболеваниям почек (поликистозу почек и фокальному сегментарному гломерулосклерозу[en]). Позже из этих клеток были выращены мини-органы, соответствующие почкам человека с данными болезнями[95]. Этот же метод был использован для моделирования синдрома длинного QT[en] на кардиомиоцитах. Подобные модели могут помочь в изучении заболеваний и разработке новых лекарственных препаратов[96].

Общественная реакция

В 2015 году о своих планах по модификации геномов человеческих эмбрионов при помощи CRISPR-Cas заявили по меньшей мере четыре лаборатории в США, лаборатории в Китае и Великобритании, а также американская биотехнологическая компания Ovascience[97]. В свете этих событий многие учёные выступили за введение международного моратория на применение технологии CRISPR-Cas к эмбрионам и клеткам зародышевой линии человека, в том числе и в медицинских целях[98][99]. Эти учёные поддержали дальнейшие фундаментальные исследования CRISPR, однако, по их мнению, технология CRISPR-Cas ещё недостаточно развита, чтобы при её применении в клинической практике гарантировать отсутствие побочных мутаций и наследственных дефектов у пациентов[100].

В апреле 2015 года группа китайских учёных опубликовала в журнале Protein & Cell[en] статью, в которых сообщили о результатах своей попытки изменить ДНК нежизнеспособных человеческих эмбрионов при помощи CRISPR-Cas. Они пытались исправить мутацию, приводящую к бета-талассемии[en][14]. По словам ведущего исследователя, Nature и Science отвергли статью из-за этических соображений[101]. Результаты эксперимента оказались не слишком оптимистичными из-за многочисленных мутаций, произошедших вне гена-мишени. Авторы исследования заявили, что в настоящее время технология CRISPR-Cas ещё не готова для применения в репродуктивной медицине[en][14].

В декабре 2015 года в Вашингтоне под председательством Дейвида Балтимора прошёл Международный саммит по редактированию генов человека (англ. International Summit on Human Gene Editing). В ходе этого саммита представители национальных академий наук США, Великобритании и Китая обсуждали этические вопросы модификации генов клеток зародышевой линии человека. В ходе встречи было решено продолжать дальнейшие фундаментальные и клинические исследования на соответствующих законодательных и этических основаниях. Особое внимание было обращено на различие между клиническим применением соматических клеток, при котором распространение производимых мутаций ограничено одной особью, и клеток зародышевой линии, чьи геномные нарушения могут быть унаследованы следующим поколением. Последнее может иметь непредвиденные и далеко идущие последствия на эволюцию человека — как генетическую, так и культурную[102].

В феврале 2016 года группе британских учёных было дано разрешение на генетическую модификацию человеческих эмбрионов с помощью CRISPR-Cas и родственных методов[103][104].

В 2012 и 2013 годах, в начале прорыва, связанного с применением CRISPR в генной инженерии, метод CRISPR-Cas был номинирован на премию Прорыв года телевизионного шоу Science Magazine[en]. В 2015 году он выиграл эту награду[105].

См. также

Напишите отзыв о статье "CRISPR"

Примечания

  1. [biomolecula.ru/content/1498 Биомолекула. CRISPR-системы: иммунизация прокариот].
  2. Makarova K. S., Haft D. H., Barrangou R., Brouns S. J., Charpentier E., Horvath P., Moineau S., Mojica F. J., Wolf Y. I., Yakunin A. F., van der Oost J., Koonin E. V. [www.ncbi.nlm.nih.gov/pmc/articles/PMC3380444/ Evolution and classification of the CRISPR-Cas systems] // Nature reviews. Microbiology. — 2011. — Vol. 9, no. 6. — P. 467—477. — DOI:10.1038/nrmicro2577. — PMID 21552286. исправить
  3. Панчин Александр Homo sapiens: работа над ошибками // Популярная механика. — 2016. — № 5. — С. 38—41. — URL: www.popmech.ru/magazine/2016/163-issue/
  4. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC213968/pdf/jbacter00202-0107.pdf Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product] // Journal of Bacteriology. — 1987. — Vol. 169, no. 12. — P. 5429—5433. — PMID 3316184. исправить
  5. 1 2 3 Lander E. S. [www.ncbi.nlm.nih.gov/pubmed/26771483 The Heroes of CRISPR] // Cell. — 2016. — Vol. 164, no. 1—2. — P. 18—28. — DOI:10.1016/j.cell.2015.12.041. — PMID 26771483. исправить
  6. Jansen R., Embden J. D., Gaastra W., Schouls L. M.  [www.ncbi.nlm.nih.gov/pubmed/11952905 Identification of genes that are associated with DNA repeats in prokaryotes] // Molecular Microbiology. — 2002. — Vol. 43, no. 6. — P. 1565—1575. — PMID 11952905. исправить
  7. Mojica F. J., Díez-Villaseñor C., García-Martínez J., Soria E.  [www.ncbi.nlm.nih.gov/pubmed/15791728 Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements] // Journal of Molecular Evolution. — 2005. — Vol. 60, no. 2. — P. 174—182. — DOI:10.1007/s00239-004-0046-3. — PMID 15791728. исправить
  8. Pourcel C., Salvignol G., Vergnaud G.  [www.microbiologyresearch.org/docserver/fulltext/micro/151/3/653.pdf?expires=1456064007&id=id&accname=guest&checksum=BF5E601DB514F006F1E5019F1F9BCC2D CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies] // Microbiology. — 2005. — Vol. 151, pt. 3. — P. 653—663. — DOI:10.1099/mic.0.27437-0. — PMID 15758212. исправить
  9. Bolotin A., Quinquis B., Sorokin A., Ehrlich S. D.  [www.microbiologyresearch.org/docserver/fulltext/micro/151/8/2551.pdf?expires=1456064241&id=id&accname=guest&checksum=EEF277F2EA478B92012DB2BE0A952DEE Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin] // Microbiology. — 2005. — Vol. 151, pt. 8. — P. 2551—2561. — DOI:10.1099/mic.0.28048-0. — PMID 16079334. исправить
  10. Makarova K. S., Grishin N. V., Shabalina S. A., Wolf Y. I., Koonin E. V.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC1462988/ A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action] // Biology Direct. — 2006. — Vol. 1, no. 1. — P. 7. — DOI:10.1186/1745-6150-1-7. — PMID 16545108. исправить
  11. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P.  [www.ncbi.nlm.nih.gov/pubmed/17379808 CRISPR provides acquired resistance against viruses in prokaryotes] // Science. — 2007. — Vol. 315, no. 5819. — P. 1709—1712. — DOI:10.1126/science.1138140. — PMID 17379808. исправить
  12. [www.dupont.com/corporate-functions/media-center/press-releases/dupont-scientist-philippe-horvath-awarded-2015-massry-prize.html DuPont Scientist Philippe Horvath Awarded 2015 Massry Prize].
  13. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Sontheimer E. J., Barrangou R.  [www.ncbi.nlm.nih.gov/pubmed/26078042 The Bacterial Origins of the CRISPR Genome-Editing Revolution] // Human Gene Therapy. — 2015. — Vol. 26, no. 7. — P. 413—424. — DOI:10.1089/hum.2015.091. — PMID 26078042. исправить
  14. 1 2 3 4 Liang Puping, Xu Yanwen, Zhang Xiya, Ding Chenhui, Huang Rui, Zhang Zhen, Lv Jie, Xie Xiaowei, Chen Yuxi, Li Yujing, Sun Ying, Bai Yaofu, Songyang Zhou, Ma Wenbin, Zhou Canquan, Huang Junjiu.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC4417674/ CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes] // Protein & Cell. — 2015. — Vol. 6, no. 5. — P. 363—372. — DOI:10.1007/s13238-015-0153-5. — PMID 25894090. исправить
  15. Reardon Sara Gene-editing summit supports some research in human embryos // Nature. — 2015. — ISSN [www.sigla.ru/table.jsp?f=8&t=3&v0=1476-4687&f=1003&t=1&v1=&f=4&t=2&v2=&f=21&t=3&v3=&f=1016&t=3&v4=&f=1016&t=3&v5=&bf=4&b=&d=0&ys=&ye=&lng=&ft=&mt=&dt=&vol=&pt=&iss=&ps=&pe=&tr=&tro=&cc=UNION&i=1&v=tagged&s=0&ss=0&st=0&i18n=ru&rlf=&psz=20&bs=20&ce=hJfuypee8JzzufeGmImYYIpZKRJeeOeeWGJIZRrRRrdmtdeee88NJJJJpeeefTJ3peKJJ3UWWPtzzzzzzzzzzzzzzzzzbzzvzzpy5zzjzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzztzzzzzzzbzzzzzzzzzzzzzzzzzzzzzzzzzzzvzzzzzzyeyTjkDnyHzTuueKZePz9decyzzLzzzL*.c8.NzrGJJvufeeeeeJheeyzjeeeeJh*peeeeKJJJJJJJJJJmjHvOJJJJJJJJJfeeeieeeeSJJJJJSJJJ3TeIJJJJ3..E.UEAcyhxD.eeeeeuzzzLJJJJ5.e8JJJheeeeeeeeeeeeyeeK3JJJJJJJJ*s7defeeeeeeeeeeeeeeeeeeeeeeeeeSJJJJJJJJZIJJzzz1..6LJJJJJJtJJZ4....EK*&debug=false 1476-4687]. — DOI:10.1038/nature.2015.18947.
  16. 1 2 Slaymaker I. M., Gao Linyi, Zetsche B., Scott D. A., Yan W. X., Zhang Feng.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC4714946/ Rationally engineered Cas9 nucleases with improved specificity] // Science. — 2016. — Vol. 351, no. 6268. — P. 84—88. — DOI:10.1126/science.aad5227. — PMID 26628643. исправить
  17. 1 2 3 4 5 6 7 Barrangou R.  [www.ncbi.nlm.nih.gov/pubmed/25574773 The roles of CRISPR-Cas systems in adaptive immunity and beyond] // Current Opinion in Immunology. — 2015. — Vol. 32. — P. 36—41. — DOI:10.1016/j.coi.2014.12.008. — PMID 25574773. исправить
  18. 1 2 Немудрый А. А., Валетдинова К. Р., Медведев С. П., Закиян С. М.  [cyberleninka.ru/article/n/sistemy-redaktirovaniya-genomov-talen-i-crispr-cas-instrumenty-otkrytiy Системы редактирования геномов TALEN и CRISPR/Cas — инструменты открытий] // Acta Naturae. — 2014. — № 3 (22). — С. 20—42.
  19. Jiang Wenyan, Maniv I., Arain F., Wang Yaying, Levin B. R., Marraffini L. A.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC3784566/ Dealing with the Evolutionary Downside of CRISPR Immunity: Bacteria and Beneficial Plasmids] // PLoS Genetics. — 2013. — Vol. 9, no. 9. — P. e1003844. — DOI:10.1371/journal.pgen.1003844. — PMID 24086164. исправить
  20. 1 2 Samson J. E., Magadan A. H., Moineau S.  [www.asmscience.org/docserver/fulltext/microbiolspec/3/1/PLAS-0034-2014.pdf?expires=1457799425&id=id&accname=guest&checksum=476FB931D52E7D6BE34B0D80F3A4D7E6 The CRISPR-Cas Immune System and Genetic Transfers: Reaching an Equilibrium] // Plasmids: Biology and Impact in Biotechnology and Discovery / Ed. by M. E. Tolmasky, J. C. Alonso. — Washington: ASM Press, 2015. — 718 p. — ISBN 978-1-5558-1897-5. — P. 209—218. — DOI:10.1128/microbiolspec.PLAS-0034-2014. — PMID [www.ncbi.nlm.nih.gov/pubmed/26104549 26104549]. исправить
  21. Marraffini L. A.  [www.ncbi.nlm.nih.gov/pubmed/26432244 CRISPR-Cas immunity in prokaryotes] // Nature. — 2015. — Vol. 526, no. 7571. — P. 55—61. — DOI:10.1038/nature15386. — PMID 26432244. исправить
  22. van Houte S., Ekroth A. K., Broniewski J. M., Chabas H., Ben Ashby, Bondy-Denomy J., Gandon S., Boots M., Paterson S., Buckling A., Westra E. R. [www.ncbi.nlm.nih.gov/pubmed/27074511 The diversity-generating benefits of a prokaryotic adaptive immune system.] (англ.) // Nature. — 2016. — DOI:10.1038/nature17436. — PMID 27074511. исправить
  23. 1 2 3 4 Barrangou R.  [download.springer.com/static/pdf/345/art%253A10.1186%252Fs13059-015-0816-9.pdf?originUrl=http%3A%2F%2Fgenomebiology.biomedcentral.com%2Farticle%2F10.1186%2Fs13059-015-0816-9&token2=exp=1457800477~acl=%2Fstatic%2Fpdf%2F345%2Fart%25253A10.1186%25252Fs13059-015-0816-9.pdf*~hmac=927b03c5d44e264a5e60f113eb8bde21dcce07168cef7d1d41bedc641123e1e5 Diversity of CRISPR-Cas immune systems and molecular machines] // Genome Biology. — 2015. — Vol. 16. — P. 247—257. — DOI:10.1186/s13059-015-0816-9. — PMID 26549499. исправить
  24. 1 2 Makarova K. S., Koonin E. V.  [www.ncbi.nlm.nih.gov/pubmed/25981466 Annotation and Classification of CRISPR-Cas Systems] // Methods in Molecular Biology. — 2015. — Vol. 1311. — P. 47—75. — DOI:10.1007/978-1-4939-2687-9_4. — PMID 25981466. исправить
  25. 1 2 3 4 5 6 7 Makarova K. S., Wolf Y. I., Alkhnbashi O. S., Costa F., Shah S. A., Saunders S. J., Barrangou R., Brouns S. J., Charpentier E., Haft D. H., Horvath P., Moineau S., Mojica F. J., Terns R. M., Terns M. P., White M. F., Yakunin A. F., Garrett R. A., van der Oost J., Backofen R., Koonin E. V.  [www.ncbi.nlm.nih.gov/pubmed/26411297 An updated evolutionary classification of CRISPR-Cas systems] // Nature reviews. Microbiology. — 2015. — Vol. 13, no. 11. — P. 722—736. — DOI:10.1038/nrmicro3569. — PMID 26411297. исправить
  26. [www.uniprot.org/uniprot/Q53VY1 UniProtKB - Q53VY1 (CSE1_THET8)].
  27. Cady K. C., O'Toole G. A.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC3133329/ Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins] // Journal of Bacteriology. — 2011. — Vol. 193, no. 14. — P. 3433—3445. — DOI:10.1128/JB.01411-10. — PMID 21398535. исправить
  28. Cass S. D., Haas K. A., Stoll B., Alkhnbashi O. S., Sharma K., Urlaub H., Backofen R., Marchfelder A., Bolt E. L.  [www.bioscirep.org/content/35/3/e00197 The role of Cas8 in type I CRISPR interference] // Bioscience Reports. — 2015. — Vol. 35, no. 3. — P. e00197. — DOI:10.1042/BSR20150043. — PMID 26182359. исправить
  29. Silas S., Mohr G., Sidote D. J., Markham L. M., Sanchez-Amat A., Bhaya D., Lambowitz A. M., Fire A. Z.  [science.sciencemag.org/content/351/6276/aad4234 Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein] // Science. — 2016. — Vol. 351, no. 6276. — P. 4234. — DOI:10.1126/science.aad4234. — PMID 26917774. исправить
  30. 1 2 3 4 5 6 7 Westra E. R., Buckling A., Fineran P. C.  [www.ncbi.nlm.nih.gov/pubmed/24704746 CRISPR-Cas systems: beyond adaptive immunity] // Nature Reviews. Microbiology. — 2014. — Vol. 12, no. 5. — P. 317—326. — DOI:10.1038/nrmicro3241. — PMID 24704746. исправить
  31. Seed K. D., Lazinski D. W., Calderwood S. B., Camilli A.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC3587790/ A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity] // Nature. — 2013. — Vol. 494, no. 7438. — P. 489—491. — DOI:10.1038/nature11927. — PMID 23446421. исправить
  32. Levasseur A., Bekliz M., Chabrière E., Pontarotti P., La Scola B., Raoult D. [www.ncbi.nlm.nih.gov/pubmed/26934229 MIMIVIRE is a defence system in mimivirus that confers resistance to virophage.] (англ.) // Nature. — 2016. — Vol. 531, no. 7593. — P. 249—252. — DOI:10.1038/nature17146. — PMID 26934229. исправить
  33. 1 2 van der Oost J., Brouns S. J.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC4638106/ CRISPR sabotage] // Genome Biology. — 2015. — Vol. 16. — P. 248. — DOI:10.1186/s13059-015-0820-0. — PMID 26553202. исправить
  34. Bondy-Denomy J., Garcia B., Strum S., Du Mingjian, Rollins M. F., Hidalgo-Reyes Y., Wiedenheft B., Maxwell K. L., Davidson A. R.  [www.nature.com/nature/journal/v526/n7571/full/nature15254.html Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins] // Nature. — 2015. — Vol. 526, no. 7571. — P. 136—139. — DOI:10.1038/nature15254. — PMID 26416740. исправить
  35. 1 2 Weiss A.  [www.sciencedirect.com/science/article/pii/S0169534715002074 Lamarckian Illusions] // Trends in Ecology & Evolution. — 2015. — Vol. 30, no. 10. — P. 566—568. — DOI:10.1016/j.tree.2015.08.003. — PMID 26411613. исправить
  36. Кунин Е. В.  Логика случая. О природе и происхождении биологической эволюции. — М.: Центрполиграф, 2014. — 527 с. — ISBN 978-5-227-04982-7. — С. 311.
  37. Chylinski K., Makarova K. S., Charpentier E., Koonin E. V.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC4041416/ Classification and evolution of type II CRISPR-Cas systems] // Nucleic Acids Research. — 2014. — Vol. 42, no. 10. — P. 6091—6105. — DOI:10.1093/nar/gku241. — PMID 24728998. исправить
  38. Bland C., Ramsey T. L., Sabree F., Lowe M., Brown K., Kyrpides N. C., Hugenholtz P.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC1924867/ CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats] // BMC Bioinformatics. — 2007. — Vol. 8. — P. 209. — DOI:10.1186/1471-2105-8-209. — PMID 17577412. исправить
  39. Edgar R. C.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC1790904/ PILER-CR: fast and accurate identification of CRISPR repeats] // BMC Bioinformatics. — 2007. — Vol. 8. — P. 18. — DOI:10.1186/1471-2105-8-18. — PMID 17239253. исправить
  40. Grissa I., Vergnaud G., Pourcel C.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC1933234/ CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats] // Nucleic Acids Research. — 2007. — Vol. 35. — P. 52—57. — DOI:10.1093/nar/gkm360. — PMID 17537822. исправить
  41. Horvath P., Romero D. A., Coûté-Monvoisin A. C., Richards M., Deveau H., Moineau S., Boyaval P., Fremaux C., Barrangou R.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC2238196/ Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus] // Journal of Bacteriology. — 2008. — Vol. 190, no. 4. — P. 1401—1412. — DOI:10.1128/JB.01415-07. — PMID 18065539. исправить
  42. Pride D. T., Sun C. L., Salzman J., Rao N., Loomer P., Armitage G. C., Banfield J. F., Relman D. A.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC3012920/ Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time] // Genome Research. — 2011. — Vol. 21, no. 1. — P. 126—136. — DOI:10.1101/gr.111732.110. — PMID 21149389. исправить
  43. Pride D. T., Salzman J., Relman D. A.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC3424356/ Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses] // Environmental Microbiology. — 2012. — Vol. 14, no. 9. — P. 2564—2576. — DOI:10.1111/j.1462-2920.2012.02775.x. — PMID 22583485. исправить
  44. Held N. L., Herrera A., Whitaker R. J.  [www.ncbi.nlm.nih.gov/pubmed/23701169 Reassortment of CRISPR repeat-spacer loci in Sulfolobus islandicus] // Environmental Microbiology. — 2013. — Vol. 15, no. 11. — P. 3065—3076. — DOI:10.1111/1462-2920.12146. — PMID 23701169. исправить
  45. Held N. L., Herrera A., Cadillo-Quiroz H., Whitaker R. J.  [journals.plos.org/plosone/article?id=10.1371/journal.pone.0012988 CRISPR associated diversity within a population of Sulfolobus islandicus] // PLoS One. — 2010. — Vol. 5, no. 9. — P. e12988. — DOI:10.1371/journal.pone.0012988. — PMID 20927396. исправить
  46. 1 2 3 4 Власов В. В., Медведев С. П., Закиян С. М.  [cyberleninka.ru/article/n/redaktory-genomov-ot-tsinkovyh-paltsev-do-crispr «Редакторы» геномов. От цинковых пальцев до CRISPR] // Наука из первых рук. — 2014. — № 2 (56). — С. 44—53.
  47. 1 2 Ran F. A., Hsu P. D., Wright J., Agarwala V., Scott D. A., Zhang F.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC3969860/ Genome engineering using the CRISPR-Cas9 system] // Nature Protocols. — 2013. — Vol. 8, no. 11. — P. 2281—2308. — DOI:10.1038/nprot.2013.143. — PMID 24157548. исправить
  48. 1 2 Peters J. M., Silvis M. R., Zhao Dehua, Hawkins J. S., Gross C. A., Qi L. S.  [www.ncbi.nlm.nih.gov/pubmed/26363124 Bacterial CRISPR: accomplishments and prospects] // Current Opinion in Microbiology. — 2015. — Vol. 27. — P. 121—126. — DOI:10.1016/j.mib.2015.08.007. — PMID 26363124. исправить
  49. Shinmyo Y., Tanaka S., Tsunoda S., Hosomichi K., Tajima A., Kawasaki H.  [www.nature.com/articles/srep20611 CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation] // Scientific Reports. — 2016. — Vol. 6. — P. 20611. — DOI:10.1038/srep20611. — PMID 26857612. исправить
  50. Sun W., Ji W., Hall J. M., Hu Q., Wang C., Beisel C. L., Gu Z. [www.ncbi.nlm.nih.gov/pubmed/26310292 Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing.] (англ.) // Angewandte Chemie (International ed. in English). — 2015. — Vol. 54, no. 41. — P. 12029—12033. — DOI:10.1002/anie.201506030. — PMID 26310292. исправить
  51. Hou Zhonggang, Zhang Yan, Propson N. E., Howden S. E., Chu Li-Fang, Sontheimer E. J., Thomson J. A.  [www.pnas.org/content/110/39/15644.full Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis] // Proc. Nat. Acad. Sci. USA. — 2013. — Vol. 110, no. 39. — P. 15644—15649. — DOI:10.1073/pnas.1313587110. — PMID 23940360. исправить
  52. Fonfara I., Le Rhun A., Chylinski K., Makarova K. S., Lécrivain A. L., Bzdrenga J., Koonin E. V., Charpentier E.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC3936727/ Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems] // Nucleic Acids Research. — 2014. — Vol. 42, no. 4. — P. 2577—2590. — DOI:10.1093/nar/gkt1074. — PMID 24270795. исправить
  53. Ran F. A., Cong Le, Yan W. X., Scott D. A., Gootenberg J. S., Kriz A. J., Zetsche B., Shalem O., Wu Xuebing, Makarova K. S., Koonin E. V., Sharp P. A., Zhang Feng.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC4393360/#!po=1.56250 In vivo genome editing using Staphylococcus aureus Cas9] // Nature. — 2015. — Vol. 520, no. 7546. — P. 186—191. — DOI:10.1038/nature14299. — PMID 25830891. исправить
  54. Deng Wulan, Shi Xinghua, Tjian R., Lionnet T., Singer R. H.  [www.pnas.org/content/112/38/11870.full CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells] // Proc. Nat. Acad. Sci. USA. — 2015. — Vol. 112, no. 38. — P. 11870—11875. — DOI:10.1073/pnas.1515692112. — PMID 26324940. исправить
  55. Chen Baohui, Gilbert L. A., Cimini B. A., Schnitzbauer J., Zhang Wei, Li Gene-Wei., Park J., Blackburn E. H., Weissman J. S., Qi L. S., Huang Bo.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC3918502/ Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system] // Cell. — 2013. — Vol. 155, no. 7. — P. 1479—1491. — DOI:10.1016/j.cell.2013.12.001. — PMID 24360272. исправить
  56. Kearns N. A., Genga R. M. J., Enuameh M. S., Garber M., Wolfe S. A., Maehr R.  [dev.biologists.org/content/141/1/219 Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells] // Development (Cambridge, England). — 2014. — Vol. 141, no. 1. — P. 219—223. — DOI:10.1242/dev.103341. — PMID 24346702. исправить
  57. Gilbert L. A., Larson M. H., Morsut L., Liu Zairan, Brar G. A., Torres S. E., Stern-Ginossar N., Brandman O., Whitehead E. H., Doudna J. A., Lim W. A., Weissman J. S., Qi L. S.  [www.cell.com/cell/fulltext/S0092-8674(13)00826-X CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes] // Cell. — 2013. — Vol. 154, no. 2. — P. 442—451. — DOI:10.1016/j.cell.2013.06.044. — PMID 23849981. исправить
  58. Perez-Pinera P., Kocak D. D., Vockley C. M., Adler A. F., Kabadi A. M., Polstein L. R., Thakore P. I., Glass K. A., Ousterout D. G., Leong K. W., Guilak F., Crawford G. E., Reddy T. E., Gersbach C. A.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC3911785/ RNA-guided gene activation by CRISPR-Cas9-based transcription factors] // Nature Methods. — 2013. — Vol. 10, no. 10. — P. 973—976. — DOI:10.1038/nmeth.2600. — PMID 23892895. исправить
  59. Hilton I. B., D'Ippolito A. M., Vockley C. M., Thakore P. I., Crawford G. E., Reddy T. E., Gersbach C. A.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC4430400/ Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers] // Nature Biotechnology. — 2015. — Vol. 33, no. 5. — P. 510—517. — DOI:10.1038/nbt.3199. — PMID 25849900. исправить
  60. Wei Shu, Zou Qingjian, Lai Sisi, Zhang Quanjun, Li Li, Yan Quanmei, Zhou Xiaoqing , Zhong Huilin, Lai Liangxue.  [www.nature.com/articles/srep19648 Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators] // Scientific Reports. — 2016. — Vol. 6. — P. 19648. — DOI:10.1038/srep19648. — PMID 26782778. исправить
  61. Tsai S. Q., Wyvekens N., Khayter C., Foden J. A., Thapar V., Reyon D., Goodwin M. J., Aryee M. J., Joung J. K.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC4090141/ Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing] // Nature Biotechnology. — 2014. — Vol. 32, no. 6. — P. 569—576. — DOI:10.1038/nbt.2908. — PMID 24770325. исправить
  62. Fujita T., Fujii H.  [www.sciencedirect.com/science/article/pii/S0006291X13013296 Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR] // Biochemical and Biophysical Research Communications. — 2013. — Vol. 439, no. 1. — P. 132—136. — DOI:10.1016/j.bbrc.2013.08.013. — PMID 23942116. исправить
  63. O'Connell M. R., Oakes B. L., Sternberg S. H., East-Seletsky A., Kaplan M., Doudna J. A.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC4268322/ Programmable RNA recognition and cleavage by CRISPR/Cas9] // Nature. — 2014. — Vol. 516, no. 7530. — P. 263—266. — DOI:10.1038/nature13769. — PMID 25274302. исправить
  64. Hale C. R., Zhao Peng, Olson S., Duff M. O., Graveley B. R., Wells L., Terns R. M., Terns M. P.  [www.sciencedirect.com/science/article/pii/S0092867409009775 RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex] // Cell. — 2009. — Vol. 139, no. 5. — P. 945—956. — DOI:10.1016/j.cell.2009.07.040. — PMID 19945378. исправить
  65. Price A. A., Sampson T. R., Ratner H. K., Grakoui A., Weiss D. S.  [www.ncbi.nlm.nih.gov/pmc/articles/PMC4434742/ Cas9-mediated targeting of viral RNA in eukaryotic cells] // Proc. Nat. Acad. Sci. USA. — 2015. — Vol. 112, no. 19. — P. 6164—6169. — DOI:10.1073/pnas.1422340112. — PMID 25918406. исправить
  66. Fagerlund R. D., Staals R. H. J., Fineran P. C.  [genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0824-9 The Cpf1 CRISPR-Cas protein expands genome-editing tools] // Genome Biology. — 2015. — Vol. 16. — P. 251. — DOI:10.1186/s13059-015-0824-9. — PMID 26578176. исправить
  67. PMID 26527385 (PMID [www.ncbi.nlm.nih.gov/pubmed/26527385 26527385])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26527385&page_out=CRISPR бота].
  68. PMID 24592315 (PMID [www.ncbi.nlm.nih.gov/pubmed/24592315 24592315])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=24592315&page_out=CRISPR бота].
  69. PMID 26707540 (PMID [www.ncbi.nlm.nih.gov/pubmed/26707540 26707540])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26707540&page_out=CRISPR бота].
  70. PMID 26832693 (PMID [www.ncbi.nlm.nih.gov/pubmed/26832693 26832693])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26832693&page_out=CRISPR бота].
  71. PMID 26850642 (PMID [www.ncbi.nlm.nih.gov/pubmed/26850642 26850642])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26850642&page_out=CRISPR бота].
  72. PMID 26837755 (PMID [www.ncbi.nlm.nih.gov/pubmed/26837755 26837755])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26837755&page_out=CRISPR бота].
  73. PMID 26687199 (PMID [www.ncbi.nlm.nih.gov/pubmed/26687199 26687199])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26687199&page_out=CRISPR бота].
  74. PMID 25596824 (PMID [www.ncbi.nlm.nih.gov/pubmed/25596824 25596824])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=25596824&page_out=CRISPR бота].
  75. PMID 26820415 (PMID [www.ncbi.nlm.nih.gov/pubmed/26820415 26820415])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26820415&page_out=CRISPR бота].
  76. PMID 26456528 (PMID [www.ncbi.nlm.nih.gov/pubmed/26456528 26456528])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26456528&page_out=CRISPR бота].
  77. PMID 26721433 (PMID [www.ncbi.nlm.nih.gov/pubmed/26721433 26721433])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26721433&page_out=CRISPR бота].
  78. PMID 26823677 (PMID [www.ncbi.nlm.nih.gov/pubmed/26823677 26823677])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26823677&page_out=CRISPR бота].
  79. PMID 26837606 (PMID [www.ncbi.nlm.nih.gov/pubmed/26837606 26837606])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26837606&page_out=CRISPR бота].
  80. PMID 26617267 (PMID [www.ncbi.nlm.nih.gov/pubmed/26617267 26617267])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26617267&page_out=CRISPR бота].
  81. PMID 26603121 (PMID [www.ncbi.nlm.nih.gov/pubmed/26603121 26603121])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26603121&page_out=CRISPR бота].
  82. PMID 26408904 (PMID [www.ncbi.nlm.nih.gov/pubmed/26408904 26408904])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26408904&page_out=CRISPR бота].
  83. PMID 25437637 (PMID [www.ncbi.nlm.nih.gov/pubmed/25437637 25437637])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=25437637&page_out=CRISPR бота].
  84. PMID 26556628 (PMID [www.ncbi.nlm.nih.gov/pubmed/26556628 26556628])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26556628&page_out=CRISPR бота].
  85. PMID 26787519 (PMID [www.ncbi.nlm.nih.gov/pubmed/26787519 26787519])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26787519&page_out=CRISPR бота].
  86. PMID 25748654 (PMID [www.ncbi.nlm.nih.gov/pubmed/25748654 25748654])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=25748654&page_out=CRISPR бота].
  87. PMID 26806808 (PMID [www.ncbi.nlm.nih.gov/pubmed/26806808 26806808])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26806808&page_out=CRISPR бота].
  88. PMID 26787518 (PMID [www.ncbi.nlm.nih.gov/pubmed/26787518 26787518])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26787518&page_out=CRISPR бота].
  89. PMID 26686765 (PMID [www.ncbi.nlm.nih.gov/pubmed/26686765 26686765])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26686765&page_out=CRISPR бота].
  90. PMID 24681508 (PMID [www.ncbi.nlm.nih.gov/pubmed/24681508 24681508])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=24681508&page_out=CRISPR бота].
  91. PMID 26814166 (PMID [www.ncbi.nlm.nih.gov/pubmed/26814166 26814166])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26814166&page_out=CRISPR бота].
  92. PMID 24315439 (PMID [www.ncbi.nlm.nih.gov/pubmed/24315439 24315439])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=24315439&page_out=CRISPR бота].
  93. PMID 26809567 (PMID [www.ncbi.nlm.nih.gov/pubmed/26809567 26809567])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26809567&page_out=CRISPR бота].
  94. PMID 27128441 (PMID [www.ncbi.nlm.nih.gov/pubmed/27128441 27128441])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=27128441&page_out=CRISPR бота].
  95. PMID 26493500 (PMID [www.ncbi.nlm.nih.gov/pubmed/26493500 26493500])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=26493500&page_out=CRISPR бота].
  96. PMID 24213244 (PMID [www.ncbi.nlm.nih.gov/pubmed/24213244 24213244])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=24213244&page_out=CRISPR бота].
  97. Antonio Regalado. [www.technologyreview.com/s/535661/engineering-the-perfect-baby/ Engineering the Perfect Baby]. MIT Technology Review (5 March 2015). Проверено 23 февраля 2016.
  98. PMID 25791083 (PMID [www.ncbi.nlm.nih.gov/pubmed/25791083 25791083])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=25791083&page_out=CRISPR бота].
  99. PMID 25810189 (PMID [www.ncbi.nlm.nih.gov/pubmed/25810189 25810189])
    Библиографическое описание появится автоматически через некоторое время. Вы можете подставить цитату вручную или используя [tools.wmflabs.org/citing-bot/pmid.php?page=25810189&page_out=CRISPR бота].
  100. Nicholas Wade. [www.nytimes.com/2015/03/20/science/biologists-call-for-halt-to-gene-editing-technique-in-humans.html Scientists Seek Ban on Method of Editing the Human Genome], The New York Times (19 March 2015). Проверено 20 марта 2015. «The biologists writing in Science support continuing laboratory research with the technique, and few if any scientists believe it is ready for clinical use.».
  101. [www.nature.com/news/chinese-scientists-genetically-modify-human-embryos-1.17378 Chinese scientists genetically modify human embryos]. Nature (22 April 2015).
  102. [www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=12032015a International Summit on Gene Editing]. National Academies of Sciences, Engineering, and Medicine (3 December 2015). Проверено 3 декабря 2015.
  103. James Gallagher. [www.bbc.co.uk/news/health-35459054 Scientists get 'gene editing' go-ahead], BBC News, BBC (1 February 2016). Проверено 1 февраля 2016.
  104. Maria Cheng. [bigstory.ap.org/article/fdda5bf9f0314b748c7438c9659da83a/britain-approves-controversial-gene-editing-technique Britain approves controversial gene-editing technique], AP News (1 February 2016). Проверено 1 февраля 2016.
  105. Science News Staff. [news.sciencemag.org/scientific-community/2015/12/and-science-s-breakthrough-year And Science’s Breakthrough of the Year is …] (December 17, 2015). Проверено 21 декабря 2015.

Литература

  • [link.springer.com/book/10.1007%2F978-3-642-34657-6 CRISPR-Cas Systems: RNA-mediated Adaptive Immunity in Bacteria and Archaea] / Rodolphe Barrangou, John van der Oost. — Springer Berlin Heidelberg, 2013. — ISBN 978-3-642-34656-9. — DOI:10.1007/978-3-642-34657-6.
  • [science.imirus.com/Mpowered/book/vscim14/i4/p1 CRISPR-Cas9: Engineering a revolution in gene editing] // Science. — 2014. — Vol. 345, № 6204. — P. 1638. — DOI:10.1126/science.345.6204.1638-d.

Ссылки

  • [crispr.u-psud.fr/index.php?page=about CRISPRs web server (онлайн база данных по CRISPR)].


Отрывок, характеризующий CRISPR

Тогда, когда уже невозможно дальше растянуть столь эластичные нити исторических рассуждений, когда действие уже явно противно тому, что все человечество называет добром и даже справедливостью, является у историков спасительное понятие о величии. Величие как будто исключает возможность меры хорошего и дурного. Для великого – нет дурного. Нет ужаса, который бы мог быть поставлен в вину тому, кто велик.
– «C'est grand!» [Это величественно!] – говорят историки, и тогда уже нет ни хорошего, ни дурного, а есть «grand» и «не grand». Grand – хорошо, не grand – дурно. Grand есть свойство, по их понятиям, каких то особенных животных, называемых ими героями. И Наполеон, убираясь в теплой шубе домой от гибнущих не только товарищей, но (по его мнению) людей, им приведенных сюда, чувствует que c'est grand, и душа его покойна.
«Du sublime (он что то sublime видит в себе) au ridicule il n'y a qu'un pas», – говорит он. И весь мир пятьдесят лет повторяет: «Sublime! Grand! Napoleon le grand! Du sublime au ridicule il n'y a qu'un pas». [величественное… От величественного до смешного только один шаг… Величественное! Великое! Наполеон великий! От величественного до смешного только шаг.]
И никому в голову не придет, что признание величия, неизмеримого мерой хорошего и дурного, есть только признание своей ничтожности и неизмеримой малости.
Для нас, с данной нам Христом мерой хорошего и дурного, нет неизмеримого. И нет величия там, где нет простоты, добра и правды.


Кто из русских людей, читая описания последнего периода кампании 1812 года, не испытывал тяжелого чувства досады, неудовлетворенности и неясности. Кто не задавал себе вопросов: как не забрали, не уничтожили всех французов, когда все три армии окружали их в превосходящем числе, когда расстроенные французы, голодая и замерзая, сдавались толпами и когда (как нам рассказывает история) цель русских состояла именно в том, чтобы остановить, отрезать и забрать в плен всех французов.
Каким образом то русское войско, которое, слабее числом французов, дало Бородинское сражение, каким образом это войско, с трех сторон окружавшее французов и имевшее целью их забрать, не достигло своей цели? Неужели такое громадное преимущество перед нами имеют французы, что мы, с превосходными силами окружив, не могли побить их? Каким образом это могло случиться?
История (та, которая называется этим словом), отвечая на эти вопросы, говорит, что это случилось оттого, что Кутузов, и Тормасов, и Чичагов, и тот то, и тот то не сделали таких то и таких то маневров.
Но отчего они не сделали всех этих маневров? Отчего, ежели они были виноваты в том, что не достигнута была предназначавшаяся цель, – отчего их не судили и не казнили? Но, даже ежели и допустить, что виною неудачи русских были Кутузов и Чичагов и т. п., нельзя понять все таки, почему и в тех условиях, в которых находились русские войска под Красным и под Березиной (в обоих случаях русские были в превосходных силах), почему не взято в плен французское войско с маршалами, королями и императорами, когда в этом состояла цель русских?
Объяснение этого странного явления тем (как то делают русские военные историки), что Кутузов помешал нападению, неосновательно потому, что мы знаем, что воля Кутузова не могла удержать войска от нападения под Вязьмой и под Тарутиным.
Почему то русское войско, которое с слабейшими силами одержало победу под Бородиным над неприятелем во всей его силе, под Красным и под Березиной в превосходных силах было побеждено расстроенными толпами французов?
Если цель русских состояла в том, чтобы отрезать и взять в плен Наполеона и маршалов, и цель эта не только не была достигнута, и все попытки к достижению этой цели всякий раз были разрушены самым постыдным образом, то последний период кампании совершенно справедливо представляется французами рядом побед и совершенно несправедливо представляется русскими историками победоносным.
Русские военные историки, настолько, насколько для них обязательна логика, невольно приходят к этому заключению и, несмотря на лирические воззвания о мужестве и преданности и т. д., должны невольно признаться, что отступление французов из Москвы есть ряд побед Наполеона и поражений Кутузова.
Но, оставив совершенно в стороне народное самолюбие, чувствуется, что заключение это само в себе заключает противуречие, так как ряд побед французов привел их к совершенному уничтожению, а ряд поражений русских привел их к полному уничтожению врага и очищению своего отечества.
Источник этого противуречия лежит в том, что историками, изучающими события по письмам государей и генералов, по реляциям, рапортам, планам и т. п., предположена ложная, никогда не существовавшая цель последнего периода войны 1812 года, – цель, будто бы состоявшая в том, чтобы отрезать и поймать Наполеона с маршалами и армией.
Цели этой никогда не было и не могло быть, потому что она не имела смысла, и достижение ее было совершенно невозможно.
Цель эта не имела никакого смысла, во первых, потому, что расстроенная армия Наполеона со всей возможной быстротой бежала из России, то есть исполняла то самое, что мог желать всякий русский. Для чего же было делать различные операции над французами, которые бежали так быстро, как только они могли?
Во вторых, бессмысленно было становиться на дороге людей, всю свою энергию направивших на бегство.
В третьих, бессмысленно было терять свои войска для уничтожения французских армий, уничтожавшихся без внешних причин в такой прогрессии, что без всякого загораживания пути они не могли перевести через границу больше того, что они перевели в декабре месяце, то есть одну сотую всего войска.
В четвертых, бессмысленно было желание взять в плен императора, королей, герцогов – людей, плен которых в высшей степени затруднил бы действия русских, как то признавали самые искусные дипломаты того времени (J. Maistre и другие). Еще бессмысленнее было желание взять корпуса французов, когда свои войска растаяли наполовину до Красного, а к корпусам пленных надо было отделять дивизии конвоя, и когда свои солдаты не всегда получали полный провиант и забранные уже пленные мерли с голода.
Весь глубокомысленный план о том, чтобы отрезать и поймать Наполеона с армией, был подобен тому плану огородника, который, выгоняя из огорода потоптавшую его гряды скотину, забежал бы к воротам и стал бы по голове бить эту скотину. Одно, что можно бы было сказать в оправдание огородника, было бы то, что он очень рассердился. Но это нельзя было даже сказать про составителей проекта, потому что не они пострадали от потоптанных гряд.
Но, кроме того, что отрезывание Наполеона с армией было бессмысленно, оно было невозможно.
Невозможно это было, во первых, потому что, так как из опыта видно, что движение колонн на пяти верстах в одном сражении никогда не совпадает с планами, то вероятность того, чтобы Чичагов, Кутузов и Витгенштейн сошлись вовремя в назначенное место, была столь ничтожна, что она равнялась невозможности, как то и думал Кутузов, еще при получении плана сказавший, что диверсии на большие расстояния не приносят желаемых результатов.
Во вторых, невозможно было потому, что, для того чтобы парализировать ту силу инерции, с которой двигалось назад войско Наполеона, надо было без сравнения большие войска, чем те, которые имели русские.
В третьих, невозможно это было потому, что военное слово отрезать не имеет никакого смысла. Отрезать можно кусок хлеба, но не армию. Отрезать армию – перегородить ей дорогу – никак нельзя, ибо места кругом всегда много, где можно обойти, и есть ночь, во время которой ничего не видно, в чем могли бы убедиться военные ученые хоть из примеров Красного и Березины. Взять же в плен никак нельзя без того, чтобы тот, кого берут в плен, на это не согласился, как нельзя поймать ласточку, хотя и можно взять ее, когда она сядет на руку. Взять в плен можно того, кто сдается, как немцы, по правилам стратегии и тактики. Но французские войска совершенно справедливо не находили этого удобным, так как одинаковая голодная и холодная смерть ожидала их на бегстве и в плену.
В четвертых же, и главное, это было невозможно потому, что никогда, с тех пор как существует мир, не было войны при тех страшных условиях, при которых она происходила в 1812 году, и русские войска в преследовании французов напрягли все свои силы и не могли сделать большего, не уничтожившись сами.
В движении русской армии от Тарутина до Красного выбыло пятьдесят тысяч больными и отсталыми, то есть число, равное населению большого губернского города. Половина людей выбыла из армии без сражений.
И об этом то периоде кампании, когда войска без сапог и шуб, с неполным провиантом, без водки, по месяцам ночуют в снегу и при пятнадцати градусах мороза; когда дня только семь и восемь часов, а остальное ночь, во время которой не может быть влияния дисциплины; когда, не так как в сраженье, на несколько часов только люди вводятся в область смерти, где уже нет дисциплины, а когда люди по месяцам живут, всякую минуту борясь с смертью от голода и холода; когда в месяц погибает половина армии, – об этом то периоде кампании нам рассказывают историки, как Милорадович должен был сделать фланговый марш туда то, а Тормасов туда то и как Чичагов должен был передвинуться туда то (передвинуться выше колена в снегу), и как тот опрокинул и отрезал, и т. д., и т. д.
Русские, умиравшие наполовину, сделали все, что можно сделать и должно было сделать для достижения достойной народа цели, и не виноваты в том, что другие русские люди, сидевшие в теплых комнатах, предполагали сделать то, что было невозможно.
Все это странное, непонятное теперь противоречие факта с описанием истории происходит только оттого, что историки, писавшие об этом событии, писали историю прекрасных чувств и слов разных генералов, а не историю событий.
Для них кажутся очень занимательны слова Милорадовича, награды, которые получил тот и этот генерал, и их предположения; а вопрос о тех пятидесяти тысячах, которые остались по госпиталям и могилам, даже не интересует их, потому что не подлежит их изучению.
А между тем стоит только отвернуться от изучения рапортов и генеральных планов, а вникнуть в движение тех сотен тысяч людей, принимавших прямое, непосредственное участие в событии, и все, казавшиеся прежде неразрешимыми, вопросы вдруг с необыкновенной легкостью и простотой получают несомненное разрешение.
Цель отрезывания Наполеона с армией никогда не существовала, кроме как в воображении десятка людей. Она не могла существовать, потому что она была бессмысленна, и достижение ее было невозможно.
Цель народа была одна: очистить свою землю от нашествия. Цель эта достигалась, во первых, сама собою, так как французы бежали, и потому следовало только не останавливать это движение. Во вторых, цель эта достигалась действиями народной войны, уничтожавшей французов, и, в третьих, тем, что большая русская армия шла следом за французами, готовая употребить силу в случае остановки движения французов.
Русская армия должна была действовать, как кнут на бегущее животное. И опытный погонщик знал, что самое выгодное держать кнут поднятым, угрожая им, а не по голове стегать бегущее животное.



Когда человек видит умирающее животное, ужас охватывает его: то, что есть он сам, – сущность его, в его глазах очевидно уничтожается – перестает быть. Но когда умирающее есть человек, и человек любимый – ощущаемый, тогда, кроме ужаса перед уничтожением жизни, чувствуется разрыв и духовная рана, которая, так же как и рана физическая, иногда убивает, иногда залечивается, но всегда болит и боится внешнего раздражающего прикосновения.
После смерти князя Андрея Наташа и княжна Марья одинаково чувствовали это. Они, нравственно согнувшись и зажмурившись от грозного, нависшего над ними облака смерти, не смели взглянуть в лицо жизни. Они осторожно берегли свои открытые раны от оскорбительных, болезненных прикосновений. Все: быстро проехавший экипаж по улице, напоминание об обеде, вопрос девушки о платье, которое надо приготовить; еще хуже, слово неискреннего, слабого участия болезненно раздражало рану, казалось оскорблением и нарушало ту необходимую тишину, в которой они обе старались прислушиваться к незамолкшему еще в их воображении страшному, строгому хору, и мешало вглядываться в те таинственные бесконечные дали, которые на мгновение открылись перед ними.
Только вдвоем им было не оскорбительно и не больно. Они мало говорили между собой. Ежели они говорили, то о самых незначительных предметах. И та и другая одинаково избегали упоминания о чем нибудь, имеющем отношение к будущему.
Признавать возможность будущего казалось им оскорблением его памяти. Еще осторожнее они обходили в своих разговорах все то, что могло иметь отношение к умершему. Им казалось, что то, что они пережили и перечувствовали, не могло быть выражено словами. Им казалось, что всякое упоминание словами о подробностях его жизни нарушало величие и святыню совершившегося в их глазах таинства.
Беспрестанные воздержания речи, постоянное старательное обхождение всего того, что могло навести на слово о нем: эти остановки с разных сторон на границе того, чего нельзя было говорить, еще чище и яснее выставляли перед их воображением то, что они чувствовали.

Но чистая, полная печаль так же невозможна, как чистая и полная радость. Княжна Марья, по своему положению одной независимой хозяйки своей судьбы, опекунши и воспитательницы племянника, первая была вызвана жизнью из того мира печали, в котором она жила первые две недели. Она получила письма от родных, на которые надо было отвечать; комната, в которую поместили Николеньку, была сыра, и он стал кашлять. Алпатыч приехал в Ярославль с отчетами о делах и с предложениями и советами переехать в Москву в Вздвиженский дом, который остался цел и требовал только небольших починок. Жизнь не останавливалась, и надо было жить. Как ни тяжело было княжне Марье выйти из того мира уединенного созерцания, в котором она жила до сих пор, как ни жалко и как будто совестно было покинуть Наташу одну, – заботы жизни требовали ее участия, и она невольно отдалась им. Она поверяла счеты с Алпатычем, советовалась с Десалем о племяннике и делала распоряжения и приготовления для своего переезда в Москву.
Наташа оставалась одна и с тех пор, как княжна Марья стала заниматься приготовлениями к отъезду, избегала и ее.
Княжна Марья предложила графине отпустить с собой Наташу в Москву, и мать и отец радостно согласились на это предложение, с каждым днем замечая упадок физических сил дочери и полагая для нее полезным и перемену места, и помощь московских врачей.
– Я никуда не поеду, – отвечала Наташа, когда ей сделали это предложение, – только, пожалуйста, оставьте меня, – сказала она и выбежала из комнаты, с трудом удерживая слезы не столько горя, сколько досады и озлобления.
После того как она почувствовала себя покинутой княжной Марьей и одинокой в своем горе, Наташа большую часть времени, одна в своей комнате, сидела с ногами в углу дивана, и, что нибудь разрывая или переминая своими тонкими, напряженными пальцами, упорным, неподвижным взглядом смотрела на то, на чем останавливались глаза. Уединение это изнуряло, мучило ее; но оно было для нее необходимо. Как только кто нибудь входил к ней, она быстро вставала, изменяла положение и выражение взгляда и бралась за книгу или шитье, очевидно с нетерпением ожидая ухода того, кто помешал ей.
Ей все казалось, что она вот вот сейчас поймет, проникнет то, на что с страшным, непосильным ей вопросом устремлен был ее душевный взгляд.
В конце декабря, в черном шерстяном платье, с небрежно связанной пучком косой, худая и бледная, Наташа сидела с ногами в углу дивана, напряженно комкая и распуская концы пояса, и смотрела на угол двери.
Она смотрела туда, куда ушел он, на ту сторону жизни. И та сторона жизни, о которой она прежде никогда не думала, которая прежде ей казалась такою далекою, невероятною, теперь была ей ближе и роднее, понятнее, чем эта сторона жизни, в которой все было или пустота и разрушение, или страдание и оскорбление.
Она смотрела туда, где она знала, что был он; но она не могла его видеть иначе, как таким, каким он был здесь. Она видела его опять таким же, каким он был в Мытищах, у Троицы, в Ярославле.
Она видела его лицо, слышала его голос и повторяла его слова и свои слова, сказанные ему, и иногда придумывала за себя и за него новые слова, которые тогда могли бы быть сказаны.
Вот он лежит на кресле в своей бархатной шубке, облокотив голову на худую, бледную руку. Грудь его страшно низка и плечи подняты. Губы твердо сжаты, глаза блестят, и на бледном лбу вспрыгивает и исчезает морщина. Одна нога его чуть заметно быстро дрожит. Наташа знает, что он борется с мучительной болью. «Что такое эта боль? Зачем боль? Что он чувствует? Как у него болит!» – думает Наташа. Он заметил ее вниманье, поднял глаза и, не улыбаясь, стал говорить.
«Одно ужасно, – сказал он, – это связать себя навеки с страдающим человеком. Это вечное мученье». И он испытующим взглядом – Наташа видела теперь этот взгляд – посмотрел на нее. Наташа, как и всегда, ответила тогда прежде, чем успела подумать о том, что она отвечает; она сказала: «Это не может так продолжаться, этого не будет, вы будете здоровы – совсем».
Она теперь сначала видела его и переживала теперь все то, что она чувствовала тогда. Она вспомнила продолжительный, грустный, строгий взгляд его при этих словах и поняла значение упрека и отчаяния этого продолжительного взгляда.
«Я согласилась, – говорила себе теперь Наташа, – что было бы ужасно, если б он остался всегда страдающим. Я сказала это тогда так только потому, что для него это было бы ужасно, а он понял это иначе. Он подумал, что это для меня ужасно бы было. Он тогда еще хотел жить – боялся смерти. И я так грубо, глупо сказала ему. Я не думала этого. Я думала совсем другое. Если бы я сказала то, что думала, я бы сказала: пускай бы он умирал, все время умирал бы перед моими глазами, я была бы счастлива в сравнении с тем, что я теперь. Теперь… Ничего, никого нет. Знал ли он это? Нет. Не знал и никогда не узнает. И теперь никогда, никогда уже нельзя поправить этого». И опять он говорил ей те же слова, но теперь в воображении своем Наташа отвечала ему иначе. Она останавливала его и говорила: «Ужасно для вас, но не для меня. Вы знайте, что мне без вас нет ничего в жизни, и страдать с вами для меня лучшее счастие». И он брал ее руку и жал ее так, как он жал ее в тот страшный вечер, за четыре дня перед смертью. И в воображении своем она говорила ему еще другие нежные, любовные речи, которые она могла бы сказать тогда, которые она говорила теперь. «Я люблю тебя… тебя… люблю, люблю…» – говорила она, судорожно сжимая руки, стискивая зубы с ожесточенным усилием.
И сладкое горе охватывало ее, и слезы уже выступали в глаза, но вдруг она спрашивала себя: кому она говорит это? Где он и кто он теперь? И опять все застилалось сухим, жестким недоумением, и опять, напряженно сдвинув брови, она вглядывалась туда, где он был. И вот, вот, ей казалось, она проникает тайну… Но в ту минуту, как уж ей открывалось, казалось, непонятное, громкий стук ручки замка двери болезненно поразил ее слух. Быстро и неосторожно, с испуганным, незанятым ею выражением лица, в комнату вошла горничная Дуняша.
– Пожалуйте к папаше, скорее, – сказала Дуняша с особенным и оживленным выражением. – Несчастье, о Петре Ильиче… письмо, – всхлипнув, проговорила она.


Кроме общего чувства отчуждения от всех людей, Наташа в это время испытывала особенное чувство отчуждения от лиц своей семьи. Все свои: отец, мать, Соня, были ей так близки, привычны, так будничны, что все их слова, чувства казались ей оскорблением того мира, в котором она жила последнее время, и она не только была равнодушна, но враждебно смотрела на них. Она слышала слова Дуняши о Петре Ильиче, о несчастии, но не поняла их.
«Какое там у них несчастие, какое может быть несчастие? У них все свое старое, привычное и покойное», – мысленно сказала себе Наташа.
Когда она вошла в залу, отец быстро выходил из комнаты графини. Лицо его было сморщено и мокро от слез. Он, видимо, выбежал из той комнаты, чтобы дать волю давившим его рыданиям. Увидав Наташу, он отчаянно взмахнул руками и разразился болезненно судорожными всхлипываниями, исказившими его круглое, мягкое лицо.
– Пе… Петя… Поди, поди, она… она… зовет… – И он, рыдая, как дитя, быстро семеня ослабевшими ногами, подошел к стулу и упал почти на него, закрыв лицо руками.
Вдруг как электрический ток пробежал по всему существу Наташи. Что то страшно больно ударило ее в сердце. Она почувствовала страшную боль; ей показалось, что что то отрывается в ней и что она умирает. Но вслед за болью она почувствовала мгновенно освобождение от запрета жизни, лежавшего на ней. Увидав отца и услыхав из за двери страшный, грубый крик матери, она мгновенно забыла себя и свое горе. Она подбежала к отцу, но он, бессильно махая рукой, указывал на дверь матери. Княжна Марья, бледная, с дрожащей нижней челюстью, вышла из двери и взяла Наташу за руку, говоря ей что то. Наташа не видела, не слышала ее. Она быстрыми шагами вошла в дверь, остановилась на мгновение, как бы в борьбе с самой собой, и подбежала к матери.
Графиня лежала на кресле, странно неловко вытягиваясь, и билась головой об стену. Соня и девушки держали ее за руки.
– Наташу, Наташу!.. – кричала графиня. – Неправда, неправда… Он лжет… Наташу! – кричала она, отталкивая от себя окружающих. – Подите прочь все, неправда! Убили!.. ха ха ха ха!.. неправда!
Наташа стала коленом на кресло, нагнулась над матерью, обняла ее, с неожиданной силой подняла, повернула к себе ее лицо и прижалась к ней.
– Маменька!.. голубчик!.. Я тут, друг мой. Маменька, – шептала она ей, не замолкая ни на секунду.
Она не выпускала матери, нежно боролась с ней, требовала подушки, воды, расстегивала и разрывала платье на матери.
– Друг мой, голубушка… маменька, душенька, – не переставая шептала она, целуя ее голову, руки, лицо и чувствуя, как неудержимо, ручьями, щекоча ей нос и щеки, текли ее слезы.
Графиня сжала руку дочери, закрыла глаза и затихла на мгновение. Вдруг она с непривычной быстротой поднялась, бессмысленно оглянулась и, увидав Наташу, стала из всех сил сжимать ее голову. Потом она повернула к себе ее морщившееся от боли лицо и долго вглядывалась в него.
– Наташа, ты меня любишь, – сказала она тихим, доверчивым шепотом. – Наташа, ты не обманешь меня? Ты мне скажешь всю правду?
Наташа смотрела на нее налитыми слезами глазами, и в лице ее была только мольба о прощении и любви.
– Друг мой, маменька, – повторяла она, напрягая все силы своей любви на то, чтобы как нибудь снять с нее на себя излишек давившего ее горя.
И опять в бессильной борьбе с действительностью мать, отказываясь верить в то, что она могла жить, когда был убит цветущий жизнью ее любимый мальчик, спасалась от действительности в мире безумия.
Наташа не помнила, как прошел этот день, ночь, следующий день, следующая ночь. Она не спала и не отходила от матери. Любовь Наташи, упорная, терпеливая, не как объяснение, не как утешение, а как призыв к жизни, всякую секунду как будто со всех сторон обнимала графиню. На третью ночь графиня затихла на несколько минут, и Наташа закрыла глаза, облокотив голову на ручку кресла. Кровать скрипнула. Наташа открыла глаза. Графиня сидела на кровати и тихо говорила.
– Как я рада, что ты приехал. Ты устал, хочешь чаю? – Наташа подошла к ней. – Ты похорошел и возмужал, – продолжала графиня, взяв дочь за руку.
– Маменька, что вы говорите!..
– Наташа, его нет, нет больше! – И, обняв дочь, в первый раз графиня начала плакать.


Княжна Марья отложила свой отъезд. Соня, граф старались заменить Наташу, но не могли. Они видели, что она одна могла удерживать мать от безумного отчаяния. Три недели Наташа безвыходно жила при матери, спала на кресле в ее комнате, поила, кормила ее и не переставая говорила с ней, – говорила, потому что один нежный, ласкающий голос ее успокоивал графиню.
Душевная рана матери не могла залечиться. Смерть Пети оторвала половину ее жизни. Через месяц после известия о смерти Пети, заставшего ее свежей и бодрой пятидесятилетней женщиной, она вышла из своей комнаты полумертвой и не принимающею участия в жизни – старухой. Но та же рана, которая наполовину убила графиню, эта новая рана вызвала Наташу к жизни.
Душевная рана, происходящая от разрыва духовного тела, точно так же, как и рана физическая, как ни странно это кажется, после того как глубокая рана зажила и кажется сошедшейся своими краями, рана душевная, как и физическая, заживает только изнутри выпирающею силой жизни.
Так же зажила рана Наташи. Она думала, что жизнь ее кончена. Но вдруг любовь к матери показала ей, что сущность ее жизни – любовь – еще жива в ней. Проснулась любовь, и проснулась жизнь.
Последние дни князя Андрея связали Наташу с княжной Марьей. Новое несчастье еще более сблизило их. Княжна Марья отложила свой отъезд и последние три недели, как за больным ребенком, ухаживала за Наташей. Последние недели, проведенные Наташей в комнате матери, надорвали ее физические силы.
Однажды княжна Марья, в середине дня, заметив, что Наташа дрожит в лихорадочном ознобе, увела ее к себе и уложила на своей постели. Наташа легла, но когда княжна Марья, опустив сторы, хотела выйти, Наташа подозвала ее к себе.
– Мне не хочется спать. Мари, посиди со мной.
– Ты устала – постарайся заснуть.
– Нет, нет. Зачем ты увела меня? Она спросит.
– Ей гораздо лучше. Она нынче так хорошо говорила, – сказала княжна Марья.
Наташа лежала в постели и в полутьме комнаты рассматривала лицо княжны Марьи.
«Похожа она на него? – думала Наташа. – Да, похожа и не похожа. Но она особенная, чужая, совсем новая, неизвестная. И она любит меня. Что у ней на душе? Все доброе. Но как? Как она думает? Как она на меня смотрит? Да, она прекрасная».
– Маша, – сказала она, робко притянув к себе ее руку. – Маша, ты не думай, что я дурная. Нет? Маша, голубушка. Как я тебя люблю. Будем совсем, совсем друзьями.
И Наташа, обнимая, стала целовать руки и лицо княжны Марьи. Княжна Марья стыдилась и радовалась этому выражению чувств Наташи.
С этого дня между княжной Марьей и Наташей установилась та страстная и нежная дружба, которая бывает только между женщинами. Они беспрестанно целовались, говорили друг другу нежные слова и большую часть времени проводили вместе. Если одна выходила, то другаябыла беспокойна и спешила присоединиться к ней. Они вдвоем чувствовали большее согласие между собой, чем порознь, каждая сама с собою. Между ними установилось чувство сильнейшее, чем дружба: это было исключительное чувство возможности жизни только в присутствии друг друга.
Иногда они молчали целые часы; иногда, уже лежа в постелях, они начинали говорить и говорили до утра. Они говорили большей частию о дальнем прошедшем. Княжна Марья рассказывала про свое детство, про свою мать, про своего отца, про свои мечтания; и Наташа, прежде с спокойным непониманием отворачивавшаяся от этой жизни, преданности, покорности, от поэзии христианского самоотвержения, теперь, чувствуя себя связанной любовью с княжной Марьей, полюбила и прошедшее княжны Марьи и поняла непонятную ей прежде сторону жизни. Она не думала прилагать к своей жизни покорность и самоотвержение, потому что она привыкла искать других радостей, но она поняла и полюбила в другой эту прежде непонятную ей добродетель. Для княжны Марьи, слушавшей рассказы о детстве и первой молодости Наташи, тоже открывалась прежде непонятная сторона жизни, вера в жизнь, в наслаждения жизни.
Они всё точно так же никогда не говорили про него с тем, чтобы не нарушать словами, как им казалось, той высоты чувства, которая была в них, а это умолчание о нем делало то, что понемногу, не веря этому, они забывали его.
Наташа похудела, побледнела и физически так стала слаба, что все постоянно говорили о ее здоровье, и ей это приятно было. Но иногда на нее неожиданно находил не только страх смерти, но страх болезни, слабости, потери красоты, и невольно она иногда внимательно разглядывала свою голую руку, удивляясь на ее худобу, или заглядывалась по утрам в зеркало на свое вытянувшееся, жалкое, как ей казалось, лицо. Ей казалось, что это так должно быть, и вместе с тем становилось страшно и грустно.
Один раз она скоро взошла наверх и тяжело запыхалась. Тотчас же невольно она придумала себе дело внизу и оттуда вбежала опять наверх, пробуя силы и наблюдая за собой.
Другой раз она позвала Дуняшу, и голос ее задребезжал. Она еще раз кликнула ее, несмотря на то, что она слышала ее шаги, – кликнула тем грудным голосом, которым она певала, и прислушалась к нему.
Она не знала этого, не поверила бы, но под казавшимся ей непроницаемым слоем ила, застлавшим ее душу, уже пробивались тонкие, нежные молодые иглы травы, которые должны были укорениться и так застлать своими жизненными побегами задавившее ее горе, что его скоро будет не видно и не заметно. Рана заживала изнутри. В конце января княжна Марья уехала в Москву, и граф настоял на том, чтобы Наташа ехала с нею, с тем чтобы посоветоваться с докторами.


После столкновения при Вязьме, где Кутузов не мог удержать свои войска от желания опрокинуть, отрезать и т. д., дальнейшее движение бежавших французов и за ними бежавших русских, до Красного, происходило без сражений. Бегство было так быстро, что бежавшая за французами русская армия не могла поспевать за ними, что лошади в кавалерии и артиллерии становились и что сведения о движении французов были всегда неверны.
Люди русского войска были так измучены этим непрерывным движением по сорок верст в сутки, что не могли двигаться быстрее.
Чтобы понять степень истощения русской армии, надо только ясно понять значение того факта, что, потеряв ранеными и убитыми во все время движения от Тарутина не более пяти тысяч человек, не потеряв сотни людей пленными, армия русская, вышедшая из Тарутина в числе ста тысяч, пришла к Красному в числе пятидесяти тысяч.
Быстрое движение русских за французами действовало на русскую армию точно так же разрушительно, как и бегство французов. Разница была только в том, что русская армия двигалась произвольно, без угрозы погибели, которая висела над французской армией, и в том, что отсталые больные у французов оставались в руках врага, отсталые русские оставались у себя дома. Главная причина уменьшения армии Наполеона была быстрота движения, и несомненным доказательством тому служит соответственное уменьшение русских войск.
Вся деятельность Кутузова, как это было под Тарутиным и под Вязьмой, была направлена только к тому, чтобы, – насколько то было в его власти, – не останавливать этого гибельного для французов движения (как хотели в Петербурге и в армии русские генералы), а содействовать ему и облегчить движение своих войск.
Но, кроме того, со времени выказавшихся в войсках утомления и огромной убыли, происходивших от быстроты движения, еще другая причина представлялась Кутузову для замедления движения войск и для выжидания. Цель русских войск была – следование за французами. Путь французов был неизвестен, и потому, чем ближе следовали наши войска по пятам французов, тем больше они проходили расстояния. Только следуя в некотором расстоянии, можно было по кратчайшему пути перерезывать зигзаги, которые делали французы. Все искусные маневры, которые предлагали генералы, выражались в передвижениях войск, в увеличении переходов, а единственно разумная цель состояла в том, чтобы уменьшить эти переходы. И к этой цели во всю кампанию, от Москвы до Вильны, была направлена деятельность Кутузова – не случайно, не временно, но так последовательно, что он ни разу не изменил ей.
Кутузов знал не умом или наукой, а всем русским существом своим знал и чувствовал то, что чувствовал каждый русский солдат, что французы побеждены, что враги бегут и надо выпроводить их; но вместе с тем он чувствовал, заодно с солдатами, всю тяжесть этого, неслыханного по быстроте и времени года, похода.
Но генералам, в особенности не русским, желавшим отличиться, удивить кого то, забрать в плен для чего то какого нибудь герцога или короля, – генералам этим казалось теперь, когда всякое сражение было и гадко и бессмысленно, им казалось, что теперь то самое время давать сражения и побеждать кого то. Кутузов только пожимал плечами, когда ему один за другим представляли проекты маневров с теми дурно обутыми, без полушубков, полуголодными солдатами, которые в один месяц, без сражений, растаяли до половины и с которыми, при наилучших условиях продолжающегося бегства, надо было пройти до границы пространство больше того, которое было пройдено.
В особенности это стремление отличиться и маневрировать, опрокидывать и отрезывать проявлялось тогда, когда русские войска наталкивались на войска французов.
Так это случилось под Красным, где думали найти одну из трех колонн французов и наткнулись на самого Наполеона с шестнадцатью тысячами. Несмотря на все средства, употребленные Кутузовым, для того чтобы избавиться от этого пагубного столкновения и чтобы сберечь свои войска, три дня у Красного продолжалось добивание разбитых сборищ французов измученными людьми русской армии.
Толь написал диспозицию: die erste Colonne marschiert [первая колонна направится туда то] и т. д. И, как всегда, сделалось все не по диспозиции. Принц Евгений Виртембергский расстреливал с горы мимо бегущие толпы французов и требовал подкрепления, которое не приходило. Французы, по ночам обегая русских, рассыпались, прятались в леса и пробирались, кто как мог, дальше.
Милорадович, который говорил, что он знать ничего не хочет о хозяйственных делах отряда, которого никогда нельзя было найти, когда его было нужно, «chevalier sans peur et sans reproche» [«рыцарь без страха и упрека»], как он сам называл себя, и охотник до разговоров с французами, посылал парламентеров, требуя сдачи, и терял время и делал не то, что ему приказывали.
– Дарю вам, ребята, эту колонну, – говорил он, подъезжая к войскам и указывая кавалеристам на французов. И кавалеристы на худых, ободранных, еле двигающихся лошадях, подгоняя их шпорами и саблями, рысцой, после сильных напряжений, подъезжали к подаренной колонне, то есть к толпе обмороженных, закоченевших и голодных французов; и подаренная колонна кидала оружие и сдавалась, чего ей уже давно хотелось.
Под Красным взяли двадцать шесть тысяч пленных, сотни пушек, какую то палку, которую называли маршальским жезлом, и спорили о том, кто там отличился, и были этим довольны, но очень сожалели о том, что не взяли Наполеона или хоть какого нибудь героя, маршала, и упрекали в этом друг друга и в особенности Кутузова.
Люди эти, увлекаемые своими страстями, были слепыми исполнителями только самого печального закона необходимости; но они считали себя героями и воображали, что то, что они делали, было самое достойное и благородное дело. Они обвиняли Кутузова и говорили, что он с самого начала кампании мешал им победить Наполеона, что он думает только об удовлетворении своих страстей и не хотел выходить из Полотняных Заводов, потому что ему там было покойно; что он под Красным остановил движенье только потому, что, узнав о присутствии Наполеона, он совершенно потерялся; что можно предполагать, что он находится в заговоре с Наполеоном, что он подкуплен им, [Записки Вильсона. (Примеч. Л.Н. Толстого.) ] и т. д., и т. д.
Мало того, что современники, увлекаемые страстями, говорили так, – потомство и история признали Наполеона grand, a Кутузова: иностранцы – хитрым, развратным, слабым придворным стариком; русские – чем то неопределенным – какой то куклой, полезной только по своему русскому имени…


В 12 м и 13 м годах Кутузова прямо обвиняли за ошибки. Государь был недоволен им. И в истории, написанной недавно по высочайшему повелению, сказано, что Кутузов был хитрый придворный лжец, боявшийся имени Наполеона и своими ошибками под Красным и под Березиной лишивший русские войска славы – полной победы над французами. [История 1812 года Богдановича: характеристика Кутузова и рассуждение о неудовлетворительности результатов Красненских сражений. (Примеч. Л.Н. Толстого.) ]
Такова судьба не великих людей, не grand homme, которых не признает русский ум, а судьба тех редких, всегда одиноких людей, которые, постигая волю провидения, подчиняют ей свою личную волю. Ненависть и презрение толпы наказывают этих людей за прозрение высших законов.
Для русских историков – странно и страшно сказать – Наполеон – это ничтожнейшее орудие истории – никогда и нигде, даже в изгнании, не выказавший человеческого достоинства, – Наполеон есть предмет восхищения и восторга; он grand. Кутузов же, тот человек, который от начала и до конца своей деятельности в 1812 году, от Бородина и до Вильны, ни разу ни одним действием, ни словом не изменяя себе, являет необычайный s истории пример самоотвержения и сознания в настоящем будущего значения события, – Кутузов представляется им чем то неопределенным и жалким, и, говоря о Кутузове и 12 м годе, им всегда как будто немножко стыдно.
А между тем трудно себе представить историческое лицо, деятельность которого так неизменно постоянно была бы направлена к одной и той же цели. Трудно вообразить себе цель, более достойную и более совпадающую с волею всего народа. Еще труднее найти другой пример в истории, где бы цель, которую поставило себе историческое лицо, была бы так совершенно достигнута, как та цель, к достижению которой была направлена вся деятельность Кутузова в 1812 году.
Кутузов никогда не говорил о сорока веках, которые смотрят с пирамид, о жертвах, которые он приносит отечеству, о том, что он намерен совершить или совершил: он вообще ничего не говорил о себе, не играл никакой роли, казался всегда самым простым и обыкновенным человеком и говорил самые простые и обыкновенные вещи. Он писал письма своим дочерям и m me Stael, читал романы, любил общество красивых женщин, шутил с генералами, офицерами и солдатами и никогда не противоречил тем людям, которые хотели ему что нибудь доказывать. Когда граф Растопчин на Яузском мосту подскакал к Кутузову с личными упреками о том, кто виноват в погибели Москвы, и сказал: «Как же вы обещали не оставлять Москвы, не дав сраженья?» – Кутузов отвечал: «Я и не оставлю Москвы без сражения», несмотря на то, что Москва была уже оставлена. Когда приехавший к нему от государя Аракчеев сказал, что надо бы Ермолова назначить начальником артиллерии, Кутузов отвечал: «Да, я и сам только что говорил это», – хотя он за минуту говорил совсем другое. Какое дело было ему, одному понимавшему тогда весь громадный смысл события, среди бестолковой толпы, окружавшей его, какое ему дело было до того, к себе или к нему отнесет граф Растопчин бедствие столицы? Еще менее могло занимать его то, кого назначат начальником артиллерии.
Не только в этих случаях, но беспрестанно этот старый человек дошедший опытом жизни до убеждения в том, что мысли и слова, служащие им выражением, не суть двигатели людей, говорил слова совершенно бессмысленные – первые, которые ему приходили в голову.
Но этот самый человек, так пренебрегавший своими словами, ни разу во всю свою деятельность не сказал ни одного слова, которое было бы не согласно с той единственной целью, к достижению которой он шел во время всей войны. Очевидно, невольно, с тяжелой уверенностью, что не поймут его, он неоднократно в самых разнообразных обстоятельствах высказывал свою мысль. Начиная от Бородинского сражения, с которого начался его разлад с окружающими, он один говорил, что Бородинское сражение есть победа, и повторял это и изустно, и в рапортах, и донесениях до самой своей смерти. Он один сказал, что потеря Москвы не есть потеря России. Он в ответ Лористону на предложение о мире отвечал, что мира не может быть, потому что такова воля народа; он один во время отступления французов говорил, что все наши маневры не нужны, что все сделается само собой лучше, чем мы того желаем, что неприятелю надо дать золотой мост, что ни Тарутинское, ни Вяземское, ни Красненское сражения не нужны, что с чем нибудь надо прийти на границу, что за десять французов он не отдаст одного русского.
И он один, этот придворный человек, как нам изображают его, человек, который лжет Аракчееву с целью угодить государю, – он один, этот придворный человек, в Вильне, тем заслуживая немилость государя, говорит, что дальнейшая война за границей вредна и бесполезна.
Но одни слова не доказали бы, что он тогда понимал значение события. Действия его – все без малейшего отступления, все были направлены к одной и той же цели, выражающейся в трех действиях: 1) напрячь все свои силы для столкновения с французами, 2) победить их и 3) изгнать из России, облегчая, насколько возможно, бедствия народа и войска.
Он, тот медлитель Кутузов, которого девиз есть терпение и время, враг решительных действий, он дает Бородинское сражение, облекая приготовления к нему в беспримерную торжественность. Он, тот Кутузов, который в Аустерлицком сражении, прежде начала его, говорит, что оно будет проиграно, в Бородине, несмотря на уверения генералов о том, что сражение проиграно, несмотря на неслыханный в истории пример того, что после выигранного сражения войско должно отступать, он один, в противность всем, до самой смерти утверждает, что Бородинское сражение – победа. Он один во все время отступления настаивает на том, чтобы не давать сражений, которые теперь бесполезны, не начинать новой войны и не переходить границ России.
Теперь понять значение события, если только не прилагать к деятельности масс целей, которые были в голове десятка людей, легко, так как все событие с его последствиями лежит перед нами.
Но каким образом тогда этот старый человек, один, в противность мнения всех, мог угадать, так верно угадал тогда значение народного смысла события, что ни разу во всю свою деятельность не изменил ему?
Источник этой необычайной силы прозрения в смысл совершающихся явлений лежал в том народном чувстве, которое он носил в себе во всей чистоте и силе его.
Только признание в нем этого чувства заставило народ такими странными путями из в немилости находящегося старика выбрать его против воли царя в представители народной войны. И только это чувство поставило его на ту высшую человеческую высоту, с которой он, главнокомандующий, направлял все свои силы не на то, чтоб убивать и истреблять людей, а на то, чтобы спасать и жалеть их.
Простая, скромная и потому истинно величественная фигура эта не могла улечься в ту лживую форму европейского героя, мнимо управляющего людьми, которую придумала история.
Для лакея не может быть великого человека, потому что у лакея свое понятие о величии.


5 ноября был первый день так называемого Красненского сражения. Перед вечером, когда уже после многих споров и ошибок генералов, зашедших не туда, куда надо; после рассылок адъютантов с противуприказаниями, когда уже стало ясно, что неприятель везде бежит и сражения не может быть и не будет, Кутузов выехал из Красного и поехал в Доброе, куда была переведена в нынешний день главная квартира.
День был ясный, морозный. Кутузов с огромной свитой недовольных им, шушукающихся за ним генералов, верхом на своей жирной белой лошадке ехал к Доброму. По всей дороге толпились, отогреваясь у костров, партии взятых нынешний день французских пленных (их взято было в этот день семь тысяч). Недалеко от Доброго огромная толпа оборванных, обвязанных и укутанных чем попало пленных гудела говором, стоя на дороге подле длинного ряда отпряженных французских орудий. При приближении главнокомандующего говор замолк, и все глаза уставились на Кутузова, который в своей белой с красным околышем шапке и ватной шинели, горбом сидевшей на его сутуловатых плечах, медленно подвигался по дороге. Один из генералов докладывал Кутузову, где взяты орудия и пленные.
Кутузов, казалось, чем то озабочен и не слышал слов генерала. Он недовольно щурился и внимательно и пристально вглядывался в те фигуры пленных, которые представляли особенно жалкий вид. Большая часть лиц французских солдат были изуродованы отмороженными носами и щеками, и почти у всех были красные, распухшие и гноившиеся глаза.
Одна кучка французов стояла близко у дороги, и два солдата – лицо одного из них было покрыто болячками – разрывали руками кусок сырого мяса. Что то было страшное и животное в том беглом взгляде, который они бросили на проезжавших, и в том злобном выражении, с которым солдат с болячками, взглянув на Кутузова, тотчас же отвернулся и продолжал свое дело.
Кутузов долго внимательно поглядел на этих двух солдат; еще более сморщившись, он прищурил глаза и раздумчиво покачал головой. В другом месте он заметил русского солдата, который, смеясь и трепля по плечу француза, что то ласково говорил ему. Кутузов опять с тем же выражением покачал головой.
– Что ты говоришь? Что? – спросил он у генерала, продолжавшего докладывать и обращавшего внимание главнокомандующего на французские взятые знамена, стоявшие перед фронтом Преображенского полка.
– А, знамена! – сказал Кутузов, видимо с трудом отрываясь от предмета, занимавшего его мысли. Он рассеянно оглянулся. Тысячи глаз со всех сторон, ожидая его сло ва, смотрели на него.
Перед Преображенским полком он остановился, тяжело вздохнул и закрыл глаза. Кто то из свиты махнул, чтобы державшие знамена солдаты подошли и поставили их древками знамен вокруг главнокомандующего. Кутузов помолчал несколько секунд и, видимо неохотно, подчиняясь необходимости своего положения, поднял голову и начал говорить. Толпы офицеров окружили его. Он внимательным взглядом обвел кружок офицеров, узнав некоторых из них.
– Благодарю всех! – сказал он, обращаясь к солдатам и опять к офицерам. В тишине, воцарившейся вокруг него, отчетливо слышны были его медленно выговариваемые слова. – Благодарю всех за трудную и верную службу. Победа совершенная, и Россия не забудет вас. Вам слава вовеки! – Он помолчал, оглядываясь.
– Нагни, нагни ему голову то, – сказал он солдату, державшему французского орла и нечаянно опустившему его перед знаменем преображенцев. – Пониже, пониже, так то вот. Ура! ребята, – быстрым движением подбородка обратись к солдатам, проговорил он.
– Ура ра ра! – заревели тысячи голосов. Пока кричали солдаты, Кутузов, согнувшись на седле, склонил голову, и глаз его засветился кротким, как будто насмешливым, блеском.
– Вот что, братцы, – сказал он, когда замолкли голоса…
И вдруг голос и выражение лица его изменились: перестал говорить главнокомандующий, а заговорил простой, старый человек, очевидно что то самое нужное желавший сообщить теперь своим товарищам.
В толпе офицеров и в рядах солдат произошло движение, чтобы яснее слышать то, что он скажет теперь.
– А вот что, братцы. Я знаю, трудно вам, да что же делать! Потерпите; недолго осталось. Выпроводим гостей, отдохнем тогда. За службу вашу вас царь не забудет. Вам трудно, да все же вы дома; а они – видите, до чего они дошли, – сказал он, указывая на пленных. – Хуже нищих последних. Пока они были сильны, мы себя не жалели, а теперь их и пожалеть можно. Тоже и они люди. Так, ребята?
Он смотрел вокруг себя, и в упорных, почтительно недоумевающих, устремленных на него взглядах он читал сочувствие своим словам: лицо его становилось все светлее и светлее от старческой кроткой улыбки, звездами морщившейся в углах губ и глаз. Он помолчал и как бы в недоумении опустил голову.
– А и то сказать, кто же их к нам звал? Поделом им, м… и… в г…. – вдруг сказал он, подняв голову. И, взмахнув нагайкой, он галопом, в первый раз во всю кампанию, поехал прочь от радостно хохотавших и ревевших ура, расстроивавших ряды солдат.
Слова, сказанные Кутузовым, едва ли были поняты войсками. Никто не сумел бы передать содержания сначала торжественной и под конец простодушно стариковской речи фельдмаршала; но сердечный смысл этой речи не только был понят, но то самое, то самое чувство величественного торжества в соединении с жалостью к врагам и сознанием своей правоты, выраженное этим, именно этим стариковским, добродушным ругательством, – это самое (чувство лежало в душе каждого солдата и выразилось радостным, долго не умолкавшим криком. Когда после этого один из генералов с вопросом о том, не прикажет ли главнокомандующий приехать коляске, обратился к нему, Кутузов, отвечая, неожиданно всхлипнул, видимо находясь в сильном волнении.


8 го ноября последний день Красненских сражений; уже смерклось, когда войска пришли на место ночлега. Весь день был тихий, морозный, с падающим легким, редким снегом; к вечеру стало выясняться. Сквозь снежинки виднелось черно лиловое звездное небо, и мороз стал усиливаться.
Мушкатерский полк, вышедший из Тарутина в числе трех тысяч, теперь, в числе девятисот человек, пришел одним из первых на назначенное место ночлега, в деревне на большой дороге. Квартиргеры, встретившие полк, объявили, что все избы заняты больными и мертвыми французами, кавалеристами и штабами. Была только одна изба для полкового командира.
Полковой командир подъехал к своей избе. Полк прошел деревню и у крайних изб на дороге поставил ружья в козлы.
Как огромное, многочленное животное, полк принялся за работу устройства своего логовища и пищи. Одна часть солдат разбрелась, по колено в снегу, в березовый лес, бывший вправо от деревни, и тотчас же послышались в лесу стук топоров, тесаков, треск ломающихся сучьев и веселые голоса; другая часть возилась около центра полковых повозок и лошадей, поставленных в кучку, доставая котлы, сухари и задавая корм лошадям; третья часть рассыпалась в деревне, устраивая помещения штабным, выбирая мертвые тела французов, лежавшие по избам, и растаскивая доски, сухие дрова и солому с крыш для костров и плетни для защиты.
Человек пятнадцать солдат за избами, с края деревни, с веселым криком раскачивали высокий плетень сарая, с которого снята уже была крыша.
– Ну, ну, разом, налегни! – кричали голоса, и в темноте ночи раскачивалось с морозным треском огромное, запорошенное снегом полотно плетня. Чаще и чаще трещали нижние колья, и, наконец, плетень завалился вместе с солдатами, напиравшими на него. Послышался громкий грубо радостный крик и хохот.
– Берись по двое! рочаг подавай сюда! вот так то. Куда лезешь то?
– Ну, разом… Да стой, ребята!.. С накрика!
Все замолкли, и негромкий, бархатно приятный голос запел песню. В конце третьей строфы, враз с окончанием последнего звука, двадцать голосов дружно вскрикнули: «Уууу! Идет! Разом! Навались, детки!..» Но, несмотря на дружные усилия, плетень мало тронулся, и в установившемся молчании слышалось тяжелое пыхтенье.
– Эй вы, шестой роты! Черти, дьяволы! Подсоби… тоже мы пригодимся.
Шестой роты человек двадцать, шедшие в деревню, присоединились к тащившим; и плетень, саженей в пять длины и в сажень ширины, изогнувшись, надавя и режа плечи пыхтевших солдат, двинулся вперед по улице деревни.
– Иди, что ли… Падай, эка… Чего стал? То то… Веселые, безобразные ругательства не замолкали.
– Вы чего? – вдруг послышался начальственный голос солдата, набежавшего на несущих.
– Господа тут; в избе сам анарал, а вы, черти, дьяволы, матершинники. Я вас! – крикнул фельдфебель и с размаху ударил в спину первого подвернувшегося солдата. – Разве тихо нельзя?
Солдаты замолкли. Солдат, которого ударил фельдфебель, стал, покряхтывая, обтирать лицо, которое он в кровь разодрал, наткнувшись на плетень.
– Вишь, черт, дерется как! Аж всю морду раскровянил, – сказал он робким шепотом, когда отошел фельдфебель.
– Али не любишь? – сказал смеющийся голос; и, умеряя звуки голосов, солдаты пошли дальше. Выбравшись за деревню, они опять заговорили так же громко, пересыпая разговор теми же бесцельными ругательствами.
В избе, мимо которой проходили солдаты, собралось высшее начальство, и за чаем шел оживленный разговор о прошедшем дне и предполагаемых маневрах будущего. Предполагалось сделать фланговый марш влево, отрезать вице короля и захватить его.
Когда солдаты притащили плетень, уже с разных сторон разгорались костры кухонь. Трещали дрова, таял снег, и черные тени солдат туда и сюда сновали по всему занятому, притоптанному в снегу, пространству.
Топоры, тесаки работали со всех сторон. Все делалось без всякого приказания. Тащились дрова про запас ночи, пригораживались шалашики начальству, варились котелки, справлялись ружья и амуниция.
Притащенный плетень осьмою ротой поставлен полукругом со стороны севера, подперт сошками, и перед ним разложен костер. Пробили зарю, сделали расчет, поужинали и разместились на ночь у костров – кто чиня обувь, кто куря трубку, кто, донага раздетый, выпаривая вшей.


Казалось бы, что в тех, почти невообразимо тяжелых условиях существования, в которых находились в то время русские солдаты, – без теплых сапог, без полушубков, без крыши над головой, в снегу при 18° мороза, без полного даже количества провианта, не всегда поспевавшего за армией, – казалось, солдаты должны бы были представлять самое печальное и унылое зрелище.
Напротив, никогда, в самых лучших материальных условиях, войско не представляло более веселого, оживленного зрелища. Это происходило оттого, что каждый день выбрасывалось из войска все то, что начинало унывать или слабеть. Все, что было физически и нравственно слабого, давно уже осталось назади: оставался один цвет войска – по силе духа и тела.
К осьмой роте, пригородившей плетень, собралось больше всего народа. Два фельдфебеля присели к ним, и костер их пылал ярче других. Они требовали за право сиденья под плетнем приношения дров.
– Эй, Макеев, что ж ты …. запропал или тебя волки съели? Неси дров то, – кричал один краснорожий рыжий солдат, щурившийся и мигавший от дыма, но не отодвигавшийся от огня. – Поди хоть ты, ворона, неси дров, – обратился этот солдат к другому. Рыжий был не унтер офицер и не ефрейтор, но был здоровый солдат, и потому повелевал теми, которые были слабее его. Худенький, маленький, с вострым носиком солдат, которого назвали вороной, покорно встал и пошел было исполнять приказание, но в это время в свет костра вступила уже тонкая красивая фигура молодого солдата, несшего беремя дров.
– Давай сюда. Во важно то!
Дрова наломали, надавили, поддули ртами и полами шинелей, и пламя зашипело и затрещало. Солдаты, придвинувшись, закурили трубки. Молодой, красивый солдат, который притащил дрова, подперся руками в бока и стал быстро и ловко топотать озябшими ногами на месте.
– Ах, маменька, холодная роса, да хороша, да в мушкатера… – припевал он, как будто икая на каждом слоге песни.
– Эй, подметки отлетят! – крикнул рыжий, заметив, что у плясуна болталась подметка. – Экой яд плясать!
Плясун остановился, оторвал болтавшуюся кожу и бросил в огонь.
– И то, брат, – сказал он; и, сев, достал из ранца обрывок французского синего сукна и стал обвертывать им ногу. – С пару зашлись, – прибавил он, вытягивая ноги к огню.
– Скоро новые отпустят. Говорят, перебьем до копца, тогда всем по двойному товару.
– А вишь, сукин сын Петров, отстал таки, – сказал фельдфебель.
– Я его давно замечал, – сказал другой.
– Да что, солдатенок…
– А в третьей роте, сказывали, за вчерашний день девять человек недосчитали.
– Да, вот суди, как ноги зазнобишь, куда пойдешь?
– Э, пустое болтать! – сказал фельдфебель.
– Али и тебе хочется того же? – сказал старый солдат, с упреком обращаясь к тому, который сказал, что ноги зазнобил.
– А ты что же думаешь? – вдруг приподнявшись из за костра, пискливым и дрожащим голосом заговорил востроносенький солдат, которого называли ворона. – Кто гладок, так похудает, а худому смерть. Вот хоть бы я. Мочи моей нет, – сказал он вдруг решительно, обращаясь к фельдфебелю, – вели в госпиталь отослать, ломота одолела; а то все одно отстанешь…
– Ну буде, буде, – спокойно сказал фельдфебель. Солдатик замолчал, и разговор продолжался.
– Нынче мало ли французов этих побрали; а сапог, прямо сказать, ни на одном настоящих нет, так, одна названье, – начал один из солдат новый разговор.
– Всё казаки поразули. Чистили для полковника избу, выносили их. Жалости смотреть, ребята, – сказал плясун. – Разворочали их: так живой один, веришь ли, лопочет что то по своему.
– А чистый народ, ребята, – сказал первый. – Белый, вот как береза белый, и бравые есть, скажи, благородные.
– А ты думаешь как? У него от всех званий набраны.
– А ничего не знают по нашему, – с улыбкой недоумения сказал плясун. – Я ему говорю: «Чьей короны?», а он свое лопочет. Чудесный народ!
– Ведь то мудрено, братцы мои, – продолжал тот, который удивлялся их белизне, – сказывали мужики под Можайским, как стали убирать битых, где страженья то была, так ведь что, говорит, почитай месяц лежали мертвые ихние то. Что ж, говорит, лежит, говорит, ихний то, как бумага белый, чистый, ни синь пороха не пахнет.
– Что ж, от холода, что ль? – спросил один.
– Эка ты умный! От холода! Жарко ведь было. Кабы от стужи, так и наши бы тоже не протухли. А то, говорит, подойдешь к нашему, весь, говорит, прогнил в червях. Так, говорит, платками обвяжемся, да, отворотя морду, и тащим; мочи нет. А ихний, говорит, как бумага белый; ни синь пороха не пахнет.
Все помолчали.
– Должно, от пищи, – сказал фельдфебель, – господскую пищу жрали.
Никто не возражал.
– Сказывал мужик то этот, под Можайским, где страженья то была, их с десяти деревень согнали, двадцать дён возили, не свозили всех, мертвых то. Волков этих что, говорит…
– Та страженья была настоящая, – сказал старый солдат. – Только и было чем помянуть; а то всё после того… Так, только народу мученье.
– И то, дядюшка. Позавчера набежали мы, так куда те, до себя не допущают. Живо ружья покидали. На коленки. Пардон – говорит. Так, только пример один. Сказывали, самого Полиона то Платов два раза брал. Слова не знает. Возьмет возьмет: вот на те, в руках прикинется птицей, улетит, да и улетит. И убить тоже нет положенья.
– Эка врать здоров ты, Киселев, посмотрю я на тебя.
– Какое врать, правда истинная.
– А кабы на мой обычай, я бы его, изловимши, да в землю бы закопал. Да осиновым колом. А то что народу загубил.
– Все одно конец сделаем, не будет ходить, – зевая, сказал старый солдат.
Разговор замолк, солдаты стали укладываться.
– Вишь, звезды то, страсть, так и горят! Скажи, бабы холсты разложили, – сказал солдат, любуясь на Млечный Путь.
– Это, ребята, к урожайному году.
– Дровец то еще надо будет.
– Спину погреешь, а брюха замерзла. Вот чуда.
– О, господи!
– Что толкаешься то, – про тебя одного огонь, что ли? Вишь… развалился.
Из за устанавливающегося молчания послышался храп некоторых заснувших; остальные поворачивались и грелись, изредка переговариваясь. От дальнего, шагов за сто, костра послышался дружный, веселый хохот.
– Вишь, грохочат в пятой роте, – сказал один солдат. – И народу что – страсть!
Один солдат поднялся и пошел к пятой роте.
– То то смеху, – сказал он, возвращаясь. – Два хранцуза пристали. Один мерзлый вовсе, а другой такой куражный, бяда! Песни играет.
– О о? пойти посмотреть… – Несколько солдат направились к пятой роте.


Пятая рота стояла подле самого леса. Огромный костер ярко горел посреди снега, освещая отягченные инеем ветви деревьев.
В середине ночи солдаты пятой роты услыхали в лесу шаги по снегу и хряск сучьев.
– Ребята, ведмедь, – сказал один солдат. Все подняли головы, прислушались, и из леса, в яркий свет костра, выступили две, держащиеся друг за друга, человеческие, странно одетые фигуры.
Это были два прятавшиеся в лесу француза. Хрипло говоря что то на непонятном солдатам языке, они подошли к костру. Один был повыше ростом, в офицерской шляпе, и казался совсем ослабевшим. Подойдя к костру, он хотел сесть, но упал на землю. Другой, маленький, коренастый, обвязанный платком по щекам солдат, был сильнее. Он поднял своего товарища и, указывая на свой рот, говорил что то. Солдаты окружили французов, подстелили больному шинель и обоим принесли каши и водки.
Ослабевший французский офицер был Рамбаль; повязанный платком был его денщик Морель.
Когда Морель выпил водки и доел котелок каши, он вдруг болезненно развеселился и начал не переставая говорить что то не понимавшим его солдатам. Рамбаль отказывался от еды и молча лежал на локте у костра, бессмысленными красными глазами глядя на русских солдат. Изредка он издавал протяжный стон и опять замолкал. Морель, показывая на плечи, внушал солдатам, что это был офицер и что его надо отогреть. Офицер русский, подошедший к костру, послал спросить у полковника, не возьмет ли он к себе отогреть французского офицера; и когда вернулись и сказали, что полковник велел привести офицера, Рамбалю передали, чтобы он шел. Он встал и хотел идти, но пошатнулся и упал бы, если бы подле стоящий солдат не поддержал его.
– Что? Не будешь? – насмешливо подмигнув, сказал один солдат, обращаясь к Рамбалю.
– Э, дурак! Что врешь нескладно! То то мужик, право, мужик, – послышались с разных сторон упреки пошутившему солдату. Рамбаля окружили, подняли двое на руки, перехватившись ими, и понесли в избу. Рамбаль обнял шеи солдат и, когда его понесли, жалобно заговорил:
– Oh, nies braves, oh, mes bons, mes bons amis! Voila des hommes! oh, mes braves, mes bons amis! [О молодцы! О мои добрые, добрые друзья! Вот люди! О мои добрые друзья!] – и, как ребенок, головой склонился на плечо одному солдату.
Между тем Морель сидел на лучшем месте, окруженный солдатами.