Возобновляемая энергия

Поделись знанием:
Перейти к: навигация, поиск

Возобновляемая или регенеративная энергия («Зеленая энергия») — энергия из источников, которые, по человеческим масштабам, являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из постоянно происходящих в окружающей среде процессов и предоставлении для технического применения. Возобновляемую энергию получают из природных ресурсов, таких как: солнечный свет, водные потоки, ветер, приливы и геотермальная теплота, которые являются возобновляемыми (пополняются естественным путём).

В 2014 году около 19,2 % мирового энергопотребления было удовлетворено из возобновляемых источников энергии[1].

Тенденции

В 2006 году около 18 % мирового потребления энергии было удовлетворено из возобновляемых источников энергии, причем 13 % из традиционной биомассы, таких, как сжигание древесины.[2] В 2010 году 16,7 % мирового потребления энергии поступало из возобновляемых источников. В 2013 году этот показатель составил 21 %К:Википедия:Статьи без источников (тип: не указан)[источник не указан 2779 дней]. Доля традиционной биомассы постепенно сокращается, в то время как доля современной возобновляемой энергии растёт.

С 2004 по 2013 годы электроэнергии, производимой в Евросоюзе из возобновляемых источников, выросла с 14 % до 25 %[3].

Гидроэлектроэнергия является крупнейшим источником возобновляемой энергии, обеспечивая 3,3 % мирового потребления энергии и 15,3 % мировой генерации электроэнергии в 2010 году. Использование энергии ветра растет примерно на 30 процентов в год, по всему миру с установленной мощностью 318 гигаватт (ГВт) в 2013 году,[4] и широко используется в странах Европы, США и Китае.[5] Производство фотоэлектрических панелей быстро нарастает, в 2008 году было произведено панелей общей мощностью 6,9 ГВт (6900 МВт), что почти в шесть раз больше уровня 2004 года[6]. Солнечные электростанции популярны в Германии и Испании.[7] Солнечные тепловые станции действуют в США и Испании, а крупнейшей из них является станция в пустыне Мохаве мощностью 354 МВт.[8] Крупнейшей в мире геотермальной установкой, является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт.

Бразилия проводит одну из крупнейших программ использования возобновляемых источников энергии в мире, связанную с производством топливного этанола из сахарного тростника. Этиловый спирт в настоящее время покрывает 18 % потребности страны в автомобильном топливе[9]. Топливный этанол также широко распространен в США.

Крупные несырьевые компании поддерживают использование возобновляемой энергии. Так, IKEA собирается к 2020 году полностью обеспечивать себя за счет возобновляемой энергии. Apple — крупнейший владелец солнечных электростанций, и за счет возобновляемых источников энергии работают все дата-центры компании. Доля возобновляемых источников в энергии, потребляемой Google, составляет 35 %. Инвестиции компании в возобновляемую энергетику превысили $2 млрд. [10]

Глобальные показатели возобновляемой энергии[11][12][13][14][15][1] 2008 2009 2010 2011 2012 2013 2014 2015
Ежегодные инвестиции в возобновляемую энергию (109 доллар США) 130 160 211 257 244 232 270 286
Суммарные установленные мощности возобновляемой электроэнергии (ГВт) 1,140 1,230 1,320 1,360 1,470 1,578 1,712 1,849
Гидроэлектроэнергия (ГВт) 885 915 945 970 990 1,018 1,055 1,064
Ветроэнергетика (ГВт) 121 159 198 238 283 319 370 433
фотоэлектричество (ГВт) 16 23 40 70 100 138 177 227
Нагрев воды тепловой энергией Солнца 130 160 185 232 255 373 406 435
Производство этанола (109 литры) 67 76 86 86 83 87 94 98
Производство биодизеля (109 литры) 12 17.8 18.5 21.4 22.5 26 29.7 30.3
Количество стран, имеющих цели развития
возобновляемой энергии
79 89 98 118 138 144 164 173

Источники возобновляемой энергии

Термоядерный синтез Солнца является источником большинства видов возобновляемой энергии, за исключением геотермической энергии и энергии приливов и отливов. По расчётам астрономов, оставшаяся продолжительность жизни Солнца составляет около пяти миллиардов лет, так что по человеческим масштабам возобновляемой энергии, происходящей от Солнца, истощение не грозит.

В строго физическом смысле энергия не возобновляется, а постоянно изымается из вышеназванных источников. Из солнечной энергии, прибывающей на Землю, лишь очень небольшая часть трансформируется в другие формы энергии, а бо́льшая часть просто уходит в космос.

Использованию постоянных процессов противопоставлена добыча ископаемых энергоносителей, таких как каменный уголь, нефть, природный газ или торф. В широком понимании они тоже являются возобновляемыми, но не по меркам человека, так как их образование требует сотен миллионов лет, а их использование проходит гораздо быстрее.

Энергия ветра

Это отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, тепловую и любую другую форму энергии для использования в народном хозяйстве. Преобразование происходит с помощью ветрогенератора (для получения электричества), ветряных мельниц (для получения механической энергии) и многих других видов агрегатов. Энергия ветра является следствием деятельности солнца, поэтому она относится к возобновляемым видам энергии.

Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Наиболее перспективными местами для производства энергии из ветра являются прибрежные зоны. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

В перспективе планируется использование энергии ветра не посредством ветрогенераторов, а более нетрадиционным образом. В городе Масдар (ОАЭ) планируется строительство электростанции работающей на пьезоэффекте. Она будет представлять собой лес из полимерных стволов покрытых пьезоэлектрическими пластинами. Эти 55-метровые стволы будут изгибаться под действием ветра и генерировать ток.

Гидроэнергия

На этих электростанциях, в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободно поточных (бесплотинных) ГЭС.

Особенности:

  • Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций
  • Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии
  • Возобновляемый источник энергии
  • Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций
  • Строительство ГЭС обычно более капиталоёмкое
  • Часто эффективные ГЭС более удалены от потребителей
  • Водохранилища часто занимают значительные территории
  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

Типы ГЭС:

На 2010 год гидроэнергетика обеспечивает производство до 76 % возобновимой и до 16 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 1015 ГВт. Лидерами по выработке гидроэнергии на гражданина являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

Энергия приливов и отливов

Электростанциями этого типа являются особого вида гидроэлектростанции, использующие энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроакумулирующая электростанция.

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками — высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

Энергия волн

Волновые электростанции используют потенциальную энергию волн переносимую на поверхности океана. Мощность волнения оценивается в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает большей удельной мощностью. Несмотря на схожую природу с энергией приливов, отливов и океанских течений волновая энергия представляет собой отличный от них источник возобновляемой энергии.

Энергия солнечного света

Данный вид энергетики основывается на преобразовании электромагнитного солнечного излучения в электрическую или тепловую энергию.

Солнечные электростанции используют энергию Солнца как напрямую (фотоэлектрические СЭС работающие на явлении внутреннего фотоэффекта), так и косвенно — используя кинетическую энергию пара.

Крупнейшая фотоэлектрическая СЭС Topaz Solar Farm имеет мощность 550 МВт. Находится в штате Калифорния, США.

К СЭС косвенного действия относятся:

  • Башенные — концентрирующие солнечный свет гелиостатами на центральной башне, наполненной солевым раствором.
  • Модульные — на этих СЭС теплоноситель, как правило масло, подводится к приемнику в фокусе каждого параболо-цилиндрического зеркального концентратора и затем передает тепло воде испаряя её.

  • Солнечные пруды[значимость факта?][16][17] — представляют собой небольшой бассейн глубиной в несколько метров имеющий многослойную структуру. Верхний — конвективный слой — пресная вода; ниже расположен градиентный слой с увеличивающейся книзу концентрацией рассола; в самом низу слой крутого рассола. Дно и стенки покрыты чёрным материалом для поглощения тепла. Нагрев происходит в нижнем слое, так как рассол имеет более высокую по сравнению с водой плотность увеличивающуюся при нагреве из-за лучшей растворимости соли в горячей воде, конвективного перемешивания слоёв не происходит и рассол может нагреваться до 100 °C и более. В рассольную среду помещён трубчатый теплообменник по которому циркулирует легкокипящая жидкость (аммиак, фреон и др.) и испаряется при нагреве передавая кинетическую энергию паровой турбине. Крупнейшая электростанция подобного типа находится в Израиле, её мощность 5 Мвт, площадь пруда 250 000 м2, глубина 3 м.К:Википедия:Статьи без источников (тип: не указан)[источник не указан 3244 дня]

Геотермальная энергия

Электростанции данного типа представляют собой теплоэлектростанции использующие в качестве теплоносителя воду из горячих геотермальных источников. В связи с отсутствием необходимости нагрева воды ГеоТЭС являются в значительной степени более экологически чистыми нежели ТЭС. Строятся ГеоТЭС в вулканических районах, где на относительно небольших глубинах вода перегревается выше температуры кипения и просачивается к поверхности, иногда проявляясь в виде гейзеров. Доступ к подземным источникам осуществляется бурением скважин.

Биоэнергетика

Данная отрасль энергетики специализируется на производстве энергии из биотоплива. Применяется в производстве, как электрической энергии, так и тепловой.

Биотопливо первого поколения

Биото́пливо — топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различают:

Биотопливо второго поколения

Биотопливо второго поколения — разнообразные виды топлива, получаемые различными методами пиролиза биомассы, или прочие виды топлива, помимо метанола, этанола, биодизеля получаемые из источников сырья «второго поколения». Быстрый пиролиз позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно произвести автомобильное топливо, или топливо для электростанций.

Источниками сырья для биотоплива второго поколения являются лигно-целлюлозные соединения, остающиеся после того, как пригодные для использования в пищевой промышленности части биологического сырья удаляются. Использование биомассы для производства биотоплива второго поколения направленно на сокращение количества использованной земли, пригодной для ведения сельского хозяйства[18]. К растениям — источникам сырья второго поколения относятся[19]:

  • Водоросли — простые живые организмы, приспособленные к росту и размножению в загрязнённой или солёной воде (содержат до двухсот раз больше масла, чем источники первого поколения, таких как соевые бобы);
  • Рыжик (растение) — растущий в ротации с пшеницей и другими зерновыми культурами;
  • Jatropha curcas или Ятрофа — растущее в засушливых почвах, с содержанием масла от 27 до 40 % в зависимости от вида.

Из биотоплив второго поколения, продающихся на рынке, наиболее известны BioOil производства канадской компании Dynamotive и SunDiesel германской компании [www.choren.com/ CHOREN Industries GmbH].

По оценкам Германского Энергетического Агентства (Deutsche Energie-Agentur GmbH) (при ныне существующих технологиях) производство топлив пиролизом биомассы может покрыть 20 % потребностей Германии в автомобильном топливе. К 2030 году, с развитием технологий, пиролиз биомассы может обеспечить 35 % германского потребления автомобильного топлива. Себестоимость производства составит менее €0,80 за литр топлива.

Создана «Пиролизная сеть» (Pyrolysis Network (PyNe) — исследовательская организация, объединяющая исследователей из 15 стран Европы, США и Канады.

Весьма перспективно также использование жидких продуктов пиролиза древесины хвойных пород. Например, смесь 70 % живичного скипидара, 25 % метанола и 5 % ацетона, то есть фракций сухой перегонки смолистой древесины сосны, с успехом может применяться в качестве замены бензина марки А-80. Причём для перегонки применяются отходы дереводобычи: сучья, пень, кора. Выход топливных фракций достигает 100 килограммов с тонны отходов.

Биотопливо третьего поколения

Биотопливо третьего поколения — топлива, полученные из водорослей.

Департамент Энергетики США с 1978 года по 1996 года исследовал водоросли с высоким содержанием масла по программе «Aquatic Species Program». Исследователи пришли к выводу, что Калифорния, Гавайи и Нью-Мексико пригодны для промышленного производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1 000 м2. Пруд в Нью-Мексико показал высокую эффективность в захвате СО2. Урожайность составила более 50 граммов водорослей с 1 м2 в день. 200 тысяч гектаров прудов могут производить топливо, достаточное для годового потребления 5 % автомобилей США. 200 тысяч гектаров — это менее 0,1 % земель США, пригодных для выращивания водорослей. У технологии ещё остаётся множество проблем. Например, водоросли любят высокую температуру (для их производства хорошо подходит пустынный климат), однако требуется дополнительная температурная регуляция, защищающая выращиваемую культуру от ночных понижений температуры («похолоданий»). В конце 1990-х годов технология не была запущена в промышленное производство в связи с относительно низкой стоимостью нефти на рынке.

Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимого для выращивания водорослей. Данная технология выращивания культуры водорослей защищена от суточных колебаний температуры, не требует жаркого пустынного климата — то есть может быть применена практически на любой действующей ТЭЦ.

Критика

Критики развития биотопливной индустрии заявляют, что растущий спрос на биотопливо вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных[20]. Например, при производстве этанола из кормовой кукурузы, барда используется для производства комбикорма для скота и птицы. При производстве биодизеля из сои или рапса жмых используется для производства комбикорма для скота. То есть производство биотоплива создаёт ещё одну стадию переработки сельскохозяйственного сырья.

Меры поддержки возобновляемых источников энергии

На данный момент существует достаточно большое количество мер поддержки ВИЭ. Некоторые из них уже зарекомендовали себя как эффективные и понятные участникам рынка. Среди таких мер стоит более подробно рассмотреть:

  • Зеленые сертификаты;
  • Возмещение стоимости технологического присоединения;
  • Тарифы на подключение;
  • Система чистого измерения;

Зеленые сертификаты

Под зелеными сертификатами понимаются сертификаты, подтверждающие генерацию определенного объёма электроэнергии на основе ВИЭ. Данные сертификаты получают только квалифицированные соответствующим органом производители. Как правило, зелёный сертификат подтверждает генерацию 1Мвт•ч, хотя данная величина может быть и другой. Зелёный сертификат может быть продан либо вместе с произведенной электроэнергией, либо отдельно, обеспечивая дополнительную поддержку производителя электроэнергии. Для отслеживания выпуска и принадлежности «зеленых сертификатов» используются специальные программно-технические средства (WREGIS, M-RETS, NEPOOL GIS). В соответствии с некоторыми программами сертификаты можно накапливать (для последующего использования в будущем), либо занимать (для исполнения обязательств в текущем году). Движущей силой механизма обращения зеленых сертификатов является необходимость выполнения компаниями обязательств, взятых на себя самостоятельно или наложенных правительством. В зарубежной литературе «зеленые сертификаты» известны также как: Renewable Energy Certificates (RECs), Green tags, Renewable Energy Credits.

Возмещение стоимости технологического присоединения

Для повышения инвестиционной привлекательности проектов на основе ВИЭ государственными органами может предусматриваться механизм частичной или полной компенсации стоимости технологического присоединения генераторов на основе возобновляемых источников к сети. На сегодняшний день только в Китае сетевые организации полностью принимают на себя все затраты на технологическое присоединение.

Фиксированные тарифы на энергию ВИЭ

Накопленный в мире опыт позволяет говорить о фиксированных тарифах как о самых успешных мерах по стимулированию развития возобновляемых источников энергии. В основе данных мер поддержки ВИЭ лежат три основных фактора:

  • гарантия подключения к сети;
  • долгосрочный контракт на покупку всей произведенной ВИЭ электроэнергии;
  • гарантия покупки произведенной электроэнергии по фиксированной цене.

Фиксированные тарифы на энергию ВИЭ могут отличаться не только для разных источников возобновляемой энергии, но и в зависимости от установленной мощности ВИЭ. Одним из вариантов системы поддержки на основе фиксированных тарифов является использование фиксированной надбавки к рыночной цене энергии ВИЭ. Как правило, надбавка к цене произведенной электроэнергии или фиксированный тариф выплачиваются в течение достаточно продолжительного периода (10-20 лет), тем самым гарантируя возврат вложенных в проект инвестиций и получение прибыли.

Система чистого измерения

Данная мера поддержки предусматривает возможность измерения отданного в сеть электричества и дальнейшее использование этой величины во взаиморасчетах с электроснабжающей организацией. В соответствии с «системой чистого измерения» владелец ВИЭ получает розничный кредит на величину, равную или большую выработанной электроэнергии. В соответствии с законодательством, во многих странах электроснабжающие организации обязаны предоставлять потребителям возможность осуществления чистого измерения.

Инвестиции

Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки — $30 млрд, Китай — $15,6 млрд, Индия — $4,1 млрд[21].

В 2009 году инвестиции в возобновляемую энергетику во всём мире составляли $160 млрд, а в 2010 году — $211 млрд. В 2010 году в ветроэнергетику было инвестировано $94,7 млрд, в солнечную энергетику — $26,1 млрд и $11 млрд — в технологии производства энергии из биомассы и мусора[22].

См. также

Примечания

  1. 1 2 REN21 2016. [www.ren21.net/GSR-2016-Report-Full-report-EN Renewables Global Status Report 2016] (pdf)
  2. [www.ren21.net/pdf/RE2007_Global_Status_Report.pdf Global Status Report 2007] (недоступная ссылка с 22-05-2013 (3964 дня) — историякопия) (PDF).
  3. Евгения Сазонова, Алексей Топалов. [www.gazeta.ru/business/2016/02/05/8058287.shtml Европа устала от солнца и ветра]. 2016-02-07. Газета.ru. Проверено 7 февраля 2016.
  4. REN21 (2009). [www.ren21.net/pdf/RE_GSR_2009_update.pdf Renewables Global Status Report: 2009 Update] (недоступная ссылка с 22-05-2013 (3964 дня) — историякопия) p. 9.
  5. [www.gwec.net/uploads/media/07-02_PR_Global_Statistics_2006.pdf Global wind energy markets continue to boom — 2006 another record year] (недоступная ссылка с 22-05-2013 (3964 дня) — историякопия) (PDF).
  6. REN21 (2009). [www.ren21.net/pdf/RE_GSR_2009_update.pdf Renewables Global Status Report: 2009 Update] (недоступная ссылка с 22-05-2013 (3964 дня) — историякопия) ([www.rieti.go.jp/en/events/bbl/10052501_reference2.pdf копия]) p. 15. «solar PV industry …Global annual production increased nearly sixfold between 2004 and 2008, reaching 6.9 GW.»
  7. [www.pvresources.com/en/top50pv.php World’s largest photovoltaic power plants] (недоступная ссылка с 22-05-2013 (3964 дня) — историякопия)
  8. [www.osti.gov/accomplishments/pdf/DE00014520/DE00014520.pdf Solar Trough Power Plants] // OSTI (PDF).
  9. [www.renewableenergyaccess.com/rea/news/story?id=44896 America and Brazil Intersect on Ethanol]
  10. Сидорович, Владимир, 2015, с. 23.
  11. REN21 2014. [www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full%20report_low%20res.pdf Renewables Global Status Report 2014] (pdf)
  12. REN21 2011. [www.ren21.net/Portals/0/documents/Resources/GSR2011_FINAL.pdf Renewables Global Status Report 2011] (pdf)
  13. REN21 2012. [www.map.ren21.net/GSR/GSR2012.pdf Renewables Global Status Report 2012] p. 17.
  14. [www.ren21.net/Portals/0/documents/Resources/GSR/2013/GSR2013_lowres.pdf REN21 2013 Renewables Global Status Report] (PDF). Проверено 20 июня 2015.
  15. REN21 2015. [www.ren21.net/wp-content/uploads/2015/06/GSR2015_KeyFindings_lowres.pdf Renewables Global Status Report 2015] (pdf)
  16. [vetrodvig.ru/?p=2532 Солнечный соляной пруд — базовый элемент индивидуальных солнечных установок.].[неавторитетный источник? 3244 дня]
  17. [www.nkj.ru/archive/articles/5426/ СОЛНЕЧНЫЕ ПРУДЫ КАК ИСТОЧНИК ЭНЕРГИИ], 2000; В. ДУБКОВСКИЙ, А. ДЕНИСОВА. Использование солнечных прудов в комбинированных энергоустановках. «Экотехнологии и ресурсосбережение» № 2, 2000, стр. 11-13.
  18. [www.iata.org/SiteCollectionDocuments/Documents/IATAConversionTechnologiesFinalv2.pdf 2^nd Generation Biomass Conversion Efficiency study]
  19. [www.iata.org/pressroom/facts_figures/fact_sheets/Pages/alt-fuels.aspx IATA Alternative Fuels]
  20. Карлайл Форд Рунге. [inosmi.ru/world/20080205/239373.html Как биотопливо может заставить бедняков голодать], "Россия в глобальной политике" № 6 (Ноябрь - Декабрь 2007). Проверено 12 мая 2015.; оригинал — [www.foreignaffairs.com/articles/2007-05-01/how-biofuels-could-starve-poor How Biofuels Could Starve the Poor] // Foreign Affairs, N4 2007
  21. [www.guardian.co.uk/environment/2009/jun/03/renewables-energy/print Green energy overtakes fossil fuel investment, says UN]
  22. [www.renewableenergyworld.com/rea/news/article/2011/08/renewables-investment-breaks-records?cmpid=rss Renewables Investment Breaks Records 29 Август 2011 г.]

Литература

  • Владимир Сидорович. Мировая энергетическая революция: Как возобновляемые источники энергии изменят наш мир. — М.: Альпина Паблишер, 2015. — 208 с. — ISBN 978-5-9614-5249-5.

Ссылки

  • [www.wwf.ru/greenenergy/ Вы и «зеленая» энергетика], раздел сайта Всемирного фонда дикой природы
  • [pvrussia.ru/ Российская ассоциация солнечной энергетики]
  • [wood-prom.ru/analitika/biotoplivo-iz-lesa Биотопливо из леса]