Красота математики

Поделись знанием:
Это текущая версия страницы, сохранённая Alexei Kopylov (обсуждение | вклад) в 15:35, 2 сентября 2016. Вы просматриваете постоянную ссылку на эту версию.

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Красота математики — восприятие математики, как объекта эстетического наслаждения, схожего с музыкой и поэзией.

Правильный взгляд на математику открывает не только истину, но и безупречную красоту — холодную и суровую, как скульптура, отстранённую от человеческих слабостей, лишённую вычурных уловок живописи и музыки — горную кристальность и строгое совершенство великого искусства. Подлинный вкус наслаждения, восторг, освобождение от бренной человеческой оболочки — всё это критерии высшего совершенства, которыми математика обладает наравне с поэзией.

Бертран Рассел[1]

Красота метода

Математики часто называют элегантным метод доказательства, обладающий одним или несколькими из следующих свойств:

  • Минимум исходных постулатов или предыдущих результатов.
  • Предельная лаконичность.
  • Необычность построения (например, с помощью теорем из другой области математики).
  • Использование новых, оригинальных идей.
  • Возможность обобщения для решения схожих проблем.

В поисках элегантного доказательства математики используют самые разнообразные способы решения проблемы, так как первое найденное доказательство необязательно является лучшим. Рекордсменом по числу доказательств (несколько сотен) является, вероятно, теорема Пифагора.[2] Другая известная теорема, доказанная множеством способов — квадратичный закон взаимности, для которой только Карл Фридрих Гаусс опубликовал 8 доказательств, основанных на совершенно различных идеях. В противоположность элегантному, логически корректное доказательство, использующее трудоёмкие вычисления, сверхсложные методы, традиционные подходы, большое число аксиом или доказательств других теорем называют грубым или неуклюжим.

Красота решения

Некоторые математики[3] считают красивым решение проблемы, устанавливающее связь между областями математики, ранее считавшимся несвязанными. Такой результат часто называют глубоким. Одним из самых известных примеров является тождество Эйлера:[4]

<math>\displaystyle e^{i \pi} + 1 = 0\, .</math>

Это особый случай формулы Эйлера, названный физиком Ричардом Фейнманом «нашим сокровищем» и «самой замечательной формулой в математике».[5] Теорема о модулярности, за доказательство которой Эндрю Уайлс и Роберт Ленглендс получили премию Вольфа, устанавливает важную взаимосвязь между эллиптическими кривыми и модулярными формами. Гипотеза чудовищного вздора (monstrous moonshine) связывает простую конечную группу Монстр с модулярными функциями через теорию струн — результат, за который Ричард Борчердс был награждён Филдсовской премией.

Глубоким результатом также является выявление неожиданных аспектов математических структур. Например, Theorema Egregium Гаусса — основная теорема теории поверхностей — устанавливает связь между локальным явлением (кривизной) и глобальным (площадью). В частности, площадь треугольника на искривлённой поверхности пропорциональна его избытку, причём коэффициент пропорциональности определяется кривизной. Другой пример — основная теорема анализа (и её векторные варианты, включая теорему Грина и теорему Стокса).

Противоположностью глубокого результата является тривиальный. К таковым можно отнести результаты, непосредственно вытекающие из других известных результатов или применимые только к специфическим объектам, таким как пустое множество. Впрочем, возможны случаи, когда формулировка теоремы может быть достаточно оригинальной, чтобы считаться глубокой, даже если её доказательство вполне очевидно.

В книге «Апология математика» Годфри Харди предполагает, что красивое доказательство или результат должны обладать «неожиданностью в сочетании с непреложностью и экономичностью».[6] Неожиданность являлась важнейшим моментом многих математических результатов Сринивасы Рамунаджана.

Итальянский математик Джан-Карло Рота, тем не менее, не признаёт неожиданность достаточным условием красоты, приводя следующий контрпример:

Очень много математических теорем оказывались неожиданными после их публикации; например, около двадцати лет назад (в 1957 году - прим.) доказательство существования неэквивалентных дифференцируемых структур на сферах большой размерности казалось неожиданным, но никому бы и в голову не пришло назвать сей факт красивым ни тогда, ни сейчас.[7]

М. И. Монастырский с лёгкой иронией пишет:

Очень трудно найти в прошлом изобретения, аналогичные милноровым впечатляющим конструкциям различных дифференциальных структур на семимерной сфере... Первоначальное доказательство Милнора было не слишком конструктивным, однако Э. Брискорн показал, что такие структуры можно описать в весьма наглядной и красивой форме.[8]

Это расхождение во мнениях иллюстрирует как субъективность восприятия математической красоты, так и её связь с результатом: доказательство существования экзотических сфер производит меньшее впечатление, чем реализация их моделей.

Ощущение красоты

Интерес к чистой математике, отличный от эмпирических исследований, отмечается у многих цивилизаций, включая древнегреческую, где «математикой занимались ради её красоты»[9]. Тем не менее, математическую красоту можно ощутить и за пределами чистой математики. Например, физики получают эстетическое наслаждение от общей теории относительности Эйнштейна, которое Поль Дирак объяснял её «великой математической красотой»[10].

Получение удовольствия от манипуляций с числами и символами требует определённой вовлечённости в занятие математикой, поэтому любое технологическое общество, использующее этот исключительно полезный инструмент, неизбежно открывает её эстетический аспект. Пассивное же наблюдение со стороны не позволяет оценить всю силу математической красоты, так как её реципиентами не являются аудитория или зритель в их классическом понимании[11].

Проявления прекрасного в математике

Френсис Хатчесон в «Исследовании о происхождении наших идей красоты и добродетели в двух трактатах» (1725) выделил следующие характеристики эстетической красоты математики:

  • единство в многообразии;
  • идеал всеобщности научных истин;
  • обретение неочевидной истины, догадки о которой требуют доказательств[12].

Возможные объяснения красоты математики

Пол Эрдёш считал так: когда решение проблемы было правильным, но казалось ему некрасивым, недостаточно изящным и лаконичным, он обычно говорил: «Прекрасно, но давайте поищем доказательство из Книги» (то есть из идеального, платонического сборника всех математических результатов, известных и неизвестных)[13]. Таким образом, всё записано в Книге и математики лишь читают её. Последователи Эрдёша М. Айгнер и Г. Циглер опубликовали книгу[14], которая за пять лет выдержала три переиздания и была переведена на несколько языков, в том числе русский.

См. также

Примечания

  1. Russell Bertrand. The Study of Mathematics // [en.wikisource.org/wiki/Mysticism_and_Logic_and_Other_Essays/Chapter_04 Mysticism and Logic: And Other Essays]. — Longman, 1919. — P. 60.
  2. Элиша Скотт Лумис собрал в своей книге «Пифагорейская гипотеза» (ISBN 0-873-53036-5) свыше 360 доказательств.
  3. Rota (1997), The phenomenology of mathematical beauty, с. 173 
  4. Gallagher, James. [www.bbc.co.uk/news/science-environment-26151062 Mathematics: Why the brain sees maths as beauty] (13 February 2014). Проверено 13 февраля 2014.
  5. Feynman Richard P. The Feynman Lectures on Physics. — Addison-Wesley, 1977. — Vol. I. — P. 22-10. — ISBN 0-201-02010-6.
  6. Hardy, G.H. 18 // .
  7. Rota (1997), The phenomenology of mathematical beauty, с. 172 
  8. Monastyrsky (2001), Some Trends in Modern Mathematics and the Fields Medal 
  9. Lang, p. 3
  10. Chandrasekhar, p. 148
  11. Phillips George. Preface // Mathematics Is Not a Spectator Sport. — Springer Science+Business Media, 2005. — ISBN 0-387-25528-1.
  12. Л. И. Лурье. Математическое образование в пространстве эстетического опыта // Образование и наука (Известия уральского отделения Российской академии образования). — 2006. — № 6 (42). — С 120.
  13. [www.youtube.com/watch?v=zRNGV85kPbI N is a number (фильм об Эрдёше с русскими субтитрами]
  14. Айгнер М., Циглер Г. Доказательства из Книги. Лучшие доказательства со времен Евклида до наших дней. М.: Мир, 2006. 256 с., ил. ISBN 5-03-003690-3

Литература

  • Г. Х. Харди. Апология математика (Перевод с английского Ю. А. Данилова). — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000, 104 с. ISBN 5-89806-035-9
  • Успенский В. А. Апология математики. М: Амфора, 2009.
  • Дуран А. Поэзия чисел. Прекрасное и математика. / Пер. с исп. М: Де Агостини, 2014, 160 с. ISBN 978-5-9774-0682-6, ISBN 978-5-9774-0722-9.
  • Пайтген Х.-О., Рихтер П. Х. Красота фракталов. Образы комплексных динамических систем. / Пер. с нем. М., Мир, 1993, 208 с. ISBN 5-03-001296-6.
  • Aigner, Martin, and Ziegler, Gunter M. (англ.) (2003), Proofs from THE BOOK, 3rd edition, Springer-Verlag (есть русский перевод).
  • Chandrasekhar, Subrahmanyan (1987), Truth and Beauty: Aesthetics and Motivations in Science, University of Chicago Press, Chicago, IL.
  • Hadamard, Jacques (1949), The Psychology of Invention in the Mathematical Field, 1st edition, Princeton University Press, Princeton, NJ. 2nd edition, 1949. Reprinted, Dover Publications, New York, NY, 1954.
  • Hardy, G.H. (1940), A Mathematician’s Apology, 1st published, 1940. Reprinted, C.P. Snow (foreword), 1967. Reprinted, Cambridge University Press, Cambridge, UK, 1992.
  • Hoffman, Paul (1992), The Man Who Loved Only Numbers, Hyperion.
  • Huntley, H.E. (1970), The Divine Proportion: A Study in Mathematical Beauty, Dover Publications, New York, NY.
  • Loomis, Elisha Scott (1968), The Pythagorean Proposition, The National Council of Teachers of Mathematics. Contains 365 proofs of the Pythagorean Theorem.
  • Lang, Serge (1985). [books.google.com/books?id=U_HITkWziLwC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false The Beauty of Doing Mathematics: Three Public Dialogues]. New York: Springer-Verlag. ISBN 0-387-96149-6.
  • Peitgen, H.-O., and Richter, P.H. (1986), The Beauty of Fractals, Springer-Verlag.
  • Reber, R., Brun, M., & Mitterndorfer, K. (2008). The use of heuristics in intuitive mathematical judgment. Psychonomic Bulletin & Review, 15, 1174—1178.
  • Strohmeier, John, and Westbrook, Peter (1999), Divine Harmony, The Life and Teachings of Pythagoras, Berkeley Hills Books, Berkeley, CA.
  • Rota, Gian-Carlo (1997). «The phenomenology of mathematical beauty». Synthese 111 (2): 171–182. DOI:10.1023/A:1004930722234.
  • Monastyrsky, Michael (2001). «[www.fields.utoronto.ca/aboutus/FieldsMedal_Monastyrsky.pdf Some Trends in Modern Mathematics and the Fields Medal]». Can. Math. Soc. Notes 33 (2 and 3).

Ссылки

  • [www.the-athenaeum.org/poetry/detail.php?id=80 Edna St. Vincent Millay (poet): Euclid alone has looked on beauty bare]
  • Terence Tao, [www.math.ucla.edu/~tao/preprints/Expository/goodmath.dvi What is good mathematics?]
  • [www.nybooks.com/articles/archives/2013/dec/05/mathematical-romance/ A Mathematical Romance] Jim Holt, December 5, 2013 issue of The New York Review of Books review of Love and Math: The Heart of Hidden Reality by Edward Frenkel