Пили

Поделись знанием:
Это текущая версия страницы, сохранённая MBHbot (обсуждение | вклад) в 17:37, 19 февраля 2016. Вы просматриваете постоянную ссылку на эту версию.

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Пили, фимбрии или ворсинки — поверхностные структуры, присутствующие у многих бактериальных клеток и представляющие собой прямые белковые цилиндры длиной 1—1,5 мкм и диаметром 7—10 нм. Различаются по строению и назначению, причём у одной бактерии могут присутствовать несколько их типов. Во многих случаях функции пилей не до конца установлены, но всегда они так или иначе участвуют в прикреплении бактериальной клетки к субстрату.

Наибольшее количество сведений о данных структурах собрано для пилей кишечных бактерий, прежде всего Escherichia coli.

Пили типа 1

Пили типа 1 прочно связаны с клеткой, и для того, чтобы отсоединить их от неё, нужны значительные усилия, большие, нежели для удаления жгутиков или половых пилей. Пили данного типа также устойчивы и к химическим воздействиям — сохраняются в 6 М мочевине, 1 М NаОН, устойчивы к додецилсульфату натрия и трипсину. Эти пили разрушаются только при кипячении в растворе с низким значением pH, что вызывает необратимую денатурацию белка. Белок, образующий пили общего типа 1, имеет молекулярную массу 17 кДа.

Пили типа 1 располагаются перитрихиально, то есть по всей поверхности бактерии. У одной клетки может быть 50—400 пилей длиной до 1,5 мкм. Диаметр этих пилей около 7 нм, а отверстия — 2,0—2,5 нм.

Формирование пилей общего типа 1 определяется генами, расположенными в хромосоме. Их активность подвержена фазовым вариациям, то есть ген может быть активен либо нет. Обычно в культуре присутствуют как клетки, имеющие много пилей общего типа 1, так и лишенные их. Клетки, находящиеся в той или иной фазе, могут быть легко выведены. Размножению клеток, лишенных пилей, способствует выращивание культуры на агаре, тогда как клетки с пилями получают преимущество при выращивании культуры в жидкой среде без аэрации. При этом они образуют пленку. Пили типа 1 придают бактериям гидрофобность, снижают их электрофоретическую подвижность. Они вызывают агглютинацию эритроцитов за счет того, что такие бактерии приклеиваются к эритроцитам (так же, как к другим клеткам животных), а также к клеткам растений и грибов, к неорганическим частицам. В присутствии маннозы нарушается гемагглютинация и прикрепление бактерий к животным клеткам вообще, поскольку пили типа 1 прикрепляются к поверхностным рецепторам, содержащим маннозу. В присутствии маннозы соответствующие участки пилей заняты её молекулами. Адгезивность пилей зависит также от гидрофобности образующего их белка пилина. С маннозными рецепторами реагируют участки пилей, расположенные по всей их поверхности, тогда как за гидрофобные взаимодействия ответственны окончания пилей.

Пили типа 2

Пили типа 2 сходны с пилями 1-го типа, но не вызывают агглютинации эритроцитов, не способствуют образованию бактериями пленки в жидкой среде. Антигенно они близки к пилям 1-го типа и, по-видимому, представляют собой их мутантную форму. Описан и еще ряд вариантов пилей, близких к пилям 1-го типа. Связи пилей общего типа 1 с патогенностью у штаммов Е. coli не удается обнаружить. У энтеропатогенных штаммов обычно образуются другие пили, кодируемые плазмидными генами. Известно несколько типов таких пилей, причем обнаруживается связь типа пилей со специфичностью бактерий в отношении тех или иных животных.

Другие типы пилей

Пили, известные как антигены К88 и К99, тоньше и лабильнее пилей 1-го типа. Они вызывают гемагглютинацию, устойчивую к маннозе, и способствуют прикреплению бактерий к клеткам кишечного эпителия животных, но не человека. Пили 987Р определяют способность Е. соli прикрепляться к эпителию тонкого кишечника новорожденных свиней; морфологически они похожи на пили 1-го типа. Пили, определяемые генетическим фактором СFА/1, вызывают агглютинацию человеческих эритроцитов и найдены у патогенных для человека штаммов. Молекулярная масса белков пилинов, кодируемых плазмидными генами, 14,5—26,2 кДа. У энтеропатогенных штаммов Е. соli пили являются одним из факторов патогенности, обеспечивающим им возможность прикрепления к клеткам кишечного эпителия. Колонизация бактериями эпителия способствует эффективному взаимодействию выделяемого ими энтеротоксина с клетками эпителия. В результате происходит нарушение водного обмена ткани, что клинически проявляется как диарея. При этом бактерии энергично размножаются в тонком кишечнике, а затем в большом количестве выносятся в окружающую среду, что способствует их распространению.

Половые пили

Половые пили Е. соli образуются у клеток донорских штаммов, отличающихся от изогенных реципиентных наличием у клеток особого генетического детерминанта — полового фактора, или фактора трансмиссивности, который либо является автономным репликоном (F-фактор), либо входит в состав автономного репликона, либо интегрирован с бактериальной хромосомой. Фактор трансмиссивности находится в составе плазмид — факторов множественной устойчивости к антибиотикам (R-факторы), факторов колициногенности и ряда других плазмид. Половые пили отличаются от пилей общего типа по строению и антигенной специфичности, пили, кодируемые различными генетическими детерминантами, также различны.

Половые F-пили, определяемые F-факторами, представляют собой белковые цилиндры, перпендикулярные поверхности клетки, толщиной 8,5—9,5 нм и длиной до 1,1 мкм. Они легко могут быть отделены от клетки при встряхивании бактериальной массы. F—пили образованы белком с молекулярной массой 11,8 кДа. В составе F—пилина отсутствуют пролин, цистеин, гистидин, аргинин. К молекуле пилина присоединены две фосфатные группы и остаток D-глюкозы, связанные с белком ковалентными связями. Пилин содержит довольно много кислых и гидрофобных аминокислот. Он синтезируется на рибосомах, связанных с цитоплазматической мембраной и в цитоплазме не обнаруживается. Пул пилина, видимо, накапливается в цитоплазматической мембране. Его молекулы в процессе синтеза содержат дополнительную сигнальную последовательность аминокислот, отщепляющуюся при транспорте через мембрану. F—пили легко диссоциируют в растворах додецилсульфата натрия и разрушаются органическими растворителями, что связано с гидрофобностью пилина. Бактерии, имеющие F—пили, приобретают новый антиген, у них изменяется поверхностный заряд. Бактерии с F-пилями малоподвижны, проявляют тенденцию к автоагглютинации, например, при понижении значения рН среды. Это также происходит за счет богатства пилина кислыми и гидрофобными аминокислотами. F—фактор интересен еще и потому, что иногда (примерно в 1 случае из 100000) он встраивается в молекулу основной ДНК клетки-хозяина. Тогда при конъюгации переносится не только F—фактор, но, также и остальная ДНК. Этот процесс занимает примерно 90 минут, но клетки могут расходиться и раньше, до полного обмена ДНК. Такие штаммы постоянно передают всю или большую часть своей ДНК другим клеткам. Эти штаммы называются Hrf-штаммами (High frequency recombination), потому что донорная ДНК таких штаммов рекомбинирует с ДНК реципиента.

Для образования F-пилей необходима активность, по крайней мере, 13 генов. Сборка трубочек пилей происходит на цитоплазматической мембране в местах её контакта с внешней мембраной. Трубочка пили проходит через слои муреина и внешнюю мембрану. Для сборки и сохранения пилей необходима энергия. Образованию пилей препятствуют цианид, динитрофенол, азид натрия. Возможно, в процессе сборки происходит фосфорилирование пилина. Обычно клетки с дерепрессированным F—фактором образуют 1—2 пили, а в анаэробных условиях и на богатой среде — до 5 пилей. Причина стимуляции пилеобразования в анаэробных условиях неизвестна. У клеток с оторванными пилями быстро отрастают новые, за 30 секунд пиля достигает 1/2 нормальной длины, а полностью формируется за 4—5 мин. Сформированные пили сохраняются на поверхности клетки 4—5 мин, а затем сбрасываются. Это свидетельствует в пользу точки зрения о том, пили — активные образования. Пили, определяемые фактором Соl I, образованы иным пилином, на них не адсорбируются фаги, специфичные для F—пилей, но имеются специфичные для них фаги. Так называемые мужские фаги адсорбируются на половых пилях, РНК-содержащие фаги — на их боковых поверхностях и нитчатые фаги, содержащие одноцепочечную ДНК, — на кончиках этих пилей. Нитчатый фаг препятствует конъюгации.

При конъюгации к реципиентной клетке присоединяется конец половой пили, при этом рецептором служит белок внешней мембраны реципиентной клетки. Сначала этот контакт не очень прочный и легко может быть нарушен при гидродинамических воздействиях. При этом пары распадаются при множественном заражении РНК-содержащими фагами или в присутствии ионов Zn2+. Через несколько минут контакт становится более прочным, происходит сближение клеток и образование между ними цитоплазматического мостика. Имеются данные, свидетельствующие о том, что передача ДНК может происходить и без образования цитоплазматического мостика, а непосредственно через отверстие в пиле. Инактивация пилей антисывороткой и любые повреждающие их воздействия приводят к нарушению процесса конъюгации, в то время как нарушение целостности внешней мембраны или муреинового слоя до некоторого предела влияют на донорские свойства клетки, имеющей пили. После установления контакта с реципиентной клеткой черв пилю в донорскую клетку передается сигнал, вызывающий начало конъюгационного синтеза ДНК. Механизм работы половых пилей еще окончательно не установлен. Ряд наблюдений свидетельствует в пользу модели, предполагающей активную функцию пилей. Согласно этой точке зрения после установления контакта с клеткой реципиента или с вирусом пиля сокращается или втягивается в клетку. Эта модель подтверждается как косвенными, так и прямыми наблюдениями. На электронно-микроскопических препаратах можно проследить, как после адсорбции нитчатого мужского фага на их кончиках пили укорачиваются, а затем нити фага оказываются на поверхности клетки. Сокращение пилей вызыват KCN или арсенат. После воздействия этими ингибиторами пили не обнаруживаются ни на поверхности клеток, ни в окружающей среде, но можно наблюдать адсорбцию на поверхности клеток мужских фагов и антител, специфичных к концам пилей, то есть их кончики, видимо, продолжают выступать над поверхностью клетки. При фаговой инфекции в дальнейшем происходит растворение белковой оболочки нитчатого фага в цитоплазматической мембране бактерии и освобождение его ДНК в цитоплазму. При инфицировании РНК-содержащими мужскими фагами сначала образуется комплекс фаговой РНК с пилином, а фаговый капсид освобождается в среду.

Обычно синтез пилина находится под контролем цитоплазматических репрессоров. В некоторых случаях удается наблюдать определенные закономерности в регуляции образования пилей. Так, в случае Соl I—фактора каждая клетка, получившая при конъюгации плазмиду Соl I, образует пили, их активное образование происходит у клеток 4—8 последующих генераций. Однако затем только единичные клетки в популяции образуют пили, поскольку у большинства бактерий синтез пилина репрессирован. Подобная репрессия, как считают, имеет приспособительное значение, поскольку клетки без пилей не чувствительны к мужским бактериофагам, которые могли бы уничтожить всю популяцию. Единичные клетки с пилями способны обеспечить конъюгацию. При контакте таких клеток с популяциями реципиентных бактерий начинается лавинообразное распространение плазмиды, поскольку образование пилей сначала не репрессировано.

Половые пили обычно образуют только активно растущие клетки, клетки из культуры, находящейся в стационарной фазе роста, обычно лишены пилей и являются плохими донорами.

Как уже было отмечено, существует много более или менее различающихся плазмид, способных определять образование половых пилей, которые также несколько различаются. Рецепторы на поверхности реципиентных клеток обладают разной степенью сродства к разным пилям, что может сильно влиять на эффективность конъюгации бактерий.

Пили, подобные пилям E. coli, образуют и другие представители Enterobacteriaceae. Половые пили имеют Vibrio, Pasteurella, Aeromonas, Pseudomonas.

Литература

  • Громов Б. В. Строение Бактерий: Учеб пособие. — Л.: Изд-во Ленингр. ун-та, 1985. — 192 с.
  • Н. Грин, У. Стаут, Д. Тейлор Биология: В 3-х т. Т. 1: М.: Мир, 1996. — 368 с.

Ссылки