Центральное многообразие

Поделись знанием:
Перейти к: навигация, поиск

Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравненияинвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения.[1] Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.[2]





Формальное определение

Рассмотрим автономное дифференциальное уравнение с особой точкой 0:

<math>\dot x=Ax+f(x),\quad(*)</math>

где <math>x\in \mathbb R^n</math>, <math>A</math> — линейный оператор, <math>f(x)</math> — гладкая функция класса <math>C^{k+1}</math>, причем <math>f(0)=0</math> и <math>Df(0)=0</math>. Иными словами, <math>Ax</math> — линеаризация векторного поля в особой точке 0.

подпространство название спектр A
<math>T^s</math> устойчивое (stable) <math>\operatorname{Re} \lambda <0</math>
<math>T^u</math> неустойчивое (unstable) <math>\operatorname{Re} \lambda >0</math>
<math>T^c</math> центральное (center) <math>\operatorname{Re} \lambda = 0</math>

Согласно классическим результатам линейной алгебры, линейное пространство раскладывается в прямую сумму трех <math>A</math>-инвариантных подпространств <math>\mathbb R^n=T^s\oplus T^u\oplus T^c</math>, где <math>T^s, T^u, T^c</math> определяются знаком вещественной части соответствующих собственных значений (см. табл.)

Эти подпространства являются инвариантными многообразиями линеаризованной системы <math>\dot x=Ax</math>, решением которой является матричная экспонента <math>x(t)=e^{At}x_0</math>. Оказывается, динамика системы в окрестности особой точки по своим свойствам близка к динамике линеаризованной системы. Точнее, справедливо следующее утверждение:[3]

Теорема (о центральном многообразии).

Предположим, что правая часть дифференциального уравнения (*) принадлежит классу <math>C^k</math>, <math>2 \leq k < \infty</math>. Тогда в окрестности особой точки существуют многообразия <math>W^s, W^u</math> и <math>W^c</math> классов <math>C^{k}, C^{k}</math> и <math>C^{k-1}</math> соответственно, инвариантные относительно фазового потока дифференциального уравнения. Они касаются в начале координат подпространств <math>T^s, T^u</math> и <math>T^c</math> и называются устойчивым, неустойчивым и центральным многообразиями соответственно.

В случае, когда правая часть уравнения (*) принадлежит классу <math>C^{\infty}</math>, многообразия <math>W^s</math> и <math>W^u</math> также принадлежат классу <math>C^{\infty}</math>, но центральное многообразие <math>W^c</math>, вообще говоря, может быть лишь конечно-гладким. При этом для любого сколь угодно большого числа <math>k</math> многообразие <math>W^c</math> принадлежит классу <math>C^{k}</math> в некоторой окрестности <math>U_k</math>, стягивающейся к особой точке при <math>k \to \infty</math>, так что пересечение всех окрестностей <math>U_k</math> состоит лишь из самой особой точки[4].

Устойчивое и неустойчивое инвариантные многообразия называются также гиперболическими, они определяются единственным образом; в то же время, локальное центральное многообразие определяется не единственным образом. Очевидно, что если система (*) линейна, то инвариантные многообразия совпадают с соответствующими инвариантными подпространствами оператора <math>A</math>.

Пример: седлоузел

Невырожденные особые точки на плоскости не имеют центрального многообразия. Рассмотрим простейший пример вырожденной особой точки: седлоузел вида

<math>\begin{cases} \dot x=x^2\\ \dot y=y \end{cases}</math>

Его неустойчивое многообразие совпадает с осью Oy и состоит из двух вертикальных сепаратрис <math>\{x=0,y>0\}</math> и <math>\{x=0,y<0\}</math> и самой особой точки. Остальные фазовые кривые задаются уравнением

<math>y(x)=y_0 \exp\left(\frac{1}{x_0}-\frac{1}{x}\right)</math>,

где <math>y(x_0)=y_0</math>.

Нетрудно видеть, что в левой полуплоскости единственная фазовая кривая, стремящаяся к особой точке, совпадает с лучом оси Ox <math>\{x<0, y=0\}</math>. В то же время, в правой полуплоскости существует бесконечно много (континуум) фазовых кривых, стремящихся к нулю — это графики функции y(x) для любого <math>x_0>0</math> и любого <math>y_0</math>. В силу того, что функция y(x) является плоской в нуле, мы можем составить гладкое инвариантное многообразие из луча <math>\{x<0, y=0\}</math>, точки (0, 0) и любой траектории в правой полуплоскости. Любое из них локально будет центральным многообразием точки (0, 0).[5]

Глобальные центральные многообразия

Если рассматривать уравнение (*) не в некоторой окрестности особой точки 0, а во всем фазовом пространстве <math>\mathbb R^n</math>, можно дать определение глобального центрального многообразия. Неформально говоря, его можно определить как инвариантное многообразие, траектории на котором не стремятся к бесконечности (в прямом либо обратном времени) вдоль гиперболических направлений. В частности, глобальное центральное многообразие содержит все ограниченные траектории (а значит, и все предельные циклы, особые точки, сепаратрисные связки и т.д.) [6]

Рассмотрим проекции <math>\pi_s,\ \pi_u,\pi_c</math> пространства <math>\mathbb R^n</math> на соответствующие инвариантные подпространства оператора <math>A</math>. Определим также подпространство <math>T^h=T^u\oplus T^s</math> и проекцию <math>\pi_h</math> на него. Центральным многообразием <math>W^c</math> называется множество таких точек <math>x</math> фазового пространства, что проекция траекторий, стартующих из <math>x</math>, на гиперболическое подпространство, ограничена. Иными словами

<math>W^c:=\left\{x\in \mathbb R^n : \sup_{t\in \mathbb R} |\pi_h(\tilde x(t,x))|<\infty \right\}</math>,

где <math>\tilde x(t,x)</math> — такое решение уравнения (*), что <math>\tilde x(0,x)=x</math>.[7]

Для существования глобального центрального многообразия на функцию <math>f(x)</math> необходимо наложить дополнительные условия: ограниченность и липшицевость с достаточно малой константой Липшица. В этом случае глобальное центральное многообразие существует, само является липшицевым подмногообразием в <math>\mathbb R^n</math> и определено единственным образом.[7] Если потребовать от <math>f(x)</math> гладкости порядка <math>k</math> и малости производной, то глобальное центральное многообразие будет иметь гладкость порядка <math>k</math> и касаться центрального инвариантного подпространства <math>T^c</math> в особой точке 0. Из этого следует, что если рассматривать ограничение глобального центрального многообразия на малую окрестность особой точки, то оно будет локальным центральным многообразием — это один из способов доказательства его существования. Даже если система (*) не удовлетворяет условиям существования глобального центрального многообразия, её можно модифицировать вне какой-то окрестности нуля (домножив на подходящую гладкую срезающую функцию типа «шапочка»), так, чтобы эти условия стали выполняться, и рассмотреть ограничение имеющегося у модифицированной системы глобального центрального многообразия. Оказывается, можно сформулировать и обратное утверждение: можно глобализовать локально заданную систему и продолжить локальное центральное многообразие до глобального.[8] Точнее, это утверждение формулируется следующим образом:[9]

Теорема. Пусть <math>f\in C^k(\mathbb R^n)</math>, <math>k\ge 1</math>, <math>f(0)=0</math>, <math>Df(0)=0</math> и <math>W^c</math> — локальное центральное многообразие (*). Найдется такая малая окрестность нуля <math>\Omega</math> и такая ограниченная на всем пространстве функция <math>\tilde f(x)</math>, совпадающая с <math>f(x)</math> в <math>\Omega</math>, что уравнение (*) для функции <math>\tilde f</math> имеет гладкое глобальное центральное многообразие, совпадающее в области <math>\Omega</math> с <math>W^c</math>

Следует отметить, что переход от локальных задач к глобальным и наоборот часто используется при доказательстве утверждений, связанных с центральными многообразиями.

Принцип сведения

Как было сказано выше, нетривиальная динамика вблизи особой точки «сосредоточена» на центральном многообразии. Если особая точка гиперболическая (то есть линеаризация не содержит собственных значений с нулевой вещественной частью), то центрального многообразия у неё нет. В этом случае, согласно теореме Гробмана-Хартмана, векторное поле орбитально-топологически эквивалентно своей линеаризации, то есть с топологической точки зрения динамика нелинейной системы полностью определяется линеаризацией. В случае негиперболической особой точки топология фазового потока определяется линейной частью и ограничением потока на центральное многообразие. Это утверждение, называемое принципом сведения Шошитайшвили, формулируется следующим образом:[10]

Теорема (А. Н. Шошитайшвили, 1975[11]).

Предположим, что правая часть векторного поля (*) принадлежит классу <math>C^2</math>. Тогда в окрестности негиперболической особой точки оно орбитально-топологически эквивалентно произведению стандартного седла и ограничению поля на центральное многообразие:

<math>\begin{cases} \dot x=w(x)\\ \dot y=-y\\ \dot z=z, \end{cases}\quad x\in W^c,\ y\in T^s,\ z\in T^u</math>

Сноски

  1. Д. Ван, Ч. Ли, Ш.-Н. Чоу. Нормальные формы и бифуркации векторных полей на плоскости. — М.: МЦНМО, 2005. — 416 с. — ISBN 5-94057-206-5., c. 13
  2. Ильяшенко Ю.С., Вейгу Л. Нелокальные бифуркации. — М.: МЦНМО-ЧеРо, 1999. — 416 с. — ISBN 5-900916-34-0., глава 1, п. 2.3
  3. Ильяшенко Ю.С., Вейгу Л. Нелокальные бифуркации. — М.: МЦНМО-ЧеРо, 1999. — 416 с. — ISBN 5-900916-34-0., глава 1, пункт 2.2
  4. Гукенхеймер Дж., Холмс Ф. Нелинейные колебания, динамические системы и бифуркации векторных полей, — Москва-Ижевск: ИКИ, 2002. — Глава 3, пар. 3.2.
  5. Д. Ван, Ч. Ли, Ш.-Н. Чоу. Нормальные формы и бифуркации векторных полей на плоскости. — М.: МЦНМО, 2005. — С. 37. — 416 с. — ISBN 5-94057-206-5.
  6. Д. Ван, Ч. Ли, Ш.-Н. Чоу. Нормальные формы и бифуркации векторных полей на плоскости. — М.: МЦНМО, 2005. — С. 14. — 416 с. — ISBN 5-94057-206-5.
  7. 1 2 Д. Ван, Ч. Ли, Ш.-Н. Чоу. Нормальные формы и бифуркации векторных полей на плоскости. — М.: МЦНМО, 2005. — С. 16. — 416 с. — ISBN 5-94057-206-5.
  8. Д. Ван, Ч. Ли, Ш.-Н. Чоу. Нормальные формы и бифуркации векторных полей на плоскости. — М.: МЦНМО, 2005. — С. 36. — 416 с. — ISBN 5-94057-206-5.
  9. Д. Ван, Ч. Ли, Ш.-Н. Чоу. Нормальные формы и бифуркации векторных полей на плоскости. — М.: МЦНМО, 2005. — С. 38. — 416 с. — ISBN 5-94057-206-5.
  10. Ильяшенко Ю.С., Вейгу Л. Нелокальные бифуркации. — М.: МЦНМО-ЧеРо, 1999. — 416 с. — ISBN 5-900916-34-0., см. также Д. Ван, Ч. Ли, Ш.-Н. Чоу. Нормальные формы и бифуркации векторных полей на плоскости. — М.: МЦНМО, 2005. — С. 406. — 416 с. — ISBN 5-94057-206-5.
  11. Шошитайшвили А. Н. Бифуркации топологического типа векторного поля вблизи особой точки. // Тр. семинаров им. И. Г. Петровского. — 1975. — № вып 1.. — С. 279—309.

Напишите отзыв о статье "Центральное многообразие"

Отрывок, характеризующий Центральное многообразие

По арфе золотой бродя,
Своей гармониею страстной
Зовет к себе, зовет тебя!
Еще день, два, и рай настанет…
Но ах! твой друг не доживет!
И он не допел еще последних слов, когда в зале молодежь приготовилась к танцам и на хорах застучали ногами и закашляли музыканты.

Пьер сидел в гостиной, где Шиншин, как с приезжим из за границы, завел с ним скучный для Пьера политический разговор, к которому присоединились и другие. Когда заиграла музыка, Наташа вошла в гостиную и, подойдя прямо к Пьеру, смеясь и краснея, сказала:
– Мама велела вас просить танцовать.
– Я боюсь спутать фигуры, – сказал Пьер, – но ежели вы хотите быть моим учителем…
И он подал свою толстую руку, низко опуская ее, тоненькой девочке.
Пока расстанавливались пары и строили музыканты, Пьер сел с своей маленькой дамой. Наташа была совершенно счастлива; она танцовала с большим , с приехавшим из за границы . Она сидела на виду у всех и разговаривала с ним, как большая. У нее в руке был веер, который ей дала подержать одна барышня. И, приняв самую светскую позу (Бог знает, где и когда она этому научилась), она, обмахиваясь веером и улыбаясь через веер, говорила с своим кавалером.
– Какова, какова? Смотрите, смотрите, – сказала старая графиня, проходя через залу и указывая на Наташу.
Наташа покраснела и засмеялась.
– Ну, что вы, мама? Ну, что вам за охота? Что ж тут удивительного?

В середине третьего экосеза зашевелились стулья в гостиной, где играли граф и Марья Дмитриевна, и большая часть почетных гостей и старички, потягиваясь после долгого сиденья и укладывая в карманы бумажники и кошельки, выходили в двери залы. Впереди шла Марья Дмитриевна с графом – оба с веселыми лицами. Граф с шутливою вежливостью, как то по балетному, подал округленную руку Марье Дмитриевне. Он выпрямился, и лицо его озарилось особенною молодецки хитрою улыбкой, и как только дотанцовали последнюю фигуру экосеза, он ударил в ладоши музыкантам и закричал на хоры, обращаясь к первой скрипке:
– Семен! Данилу Купора знаешь?
Это был любимый танец графа, танцованный им еще в молодости. (Данило Купор была собственно одна фигура англеза .)
– Смотрите на папа, – закричала на всю залу Наташа (совершенно забыв, что она танцует с большим), пригибая к коленам свою кудрявую головку и заливаясь своим звонким смехом по всей зале.
Действительно, всё, что только было в зале, с улыбкою радости смотрело на веселого старичка, который рядом с своею сановитою дамой, Марьей Дмитриевной, бывшей выше его ростом, округлял руки, в такт потряхивая ими, расправлял плечи, вывертывал ноги, слегка притопывая, и всё более и более распускавшеюся улыбкой на своем круглом лице приготовлял зрителей к тому, что будет. Как только заслышались веселые, вызывающие звуки Данилы Купора, похожие на развеселого трепачка, все двери залы вдруг заставились с одной стороны мужскими, с другой – женскими улыбающимися лицами дворовых, вышедших посмотреть на веселящегося барина.
– Батюшка то наш! Орел! – проговорила громко няня из одной двери.
Граф танцовал хорошо и знал это, но его дама вовсе не умела и не хотела хорошо танцовать. Ее огромное тело стояло прямо с опущенными вниз мощными руками (она передала ридикюль графине); только одно строгое, но красивое лицо ее танцовало. Что выражалось во всей круглой фигуре графа, у Марьи Дмитриевны выражалось лишь в более и более улыбающемся лице и вздергивающемся носе. Но зато, ежели граф, всё более и более расходясь, пленял зрителей неожиданностью ловких выверток и легких прыжков своих мягких ног, Марья Дмитриевна малейшим усердием при движении плеч или округлении рук в поворотах и притопываньях, производила не меньшее впечатление по заслуге, которую ценил всякий при ее тучности и всегдашней суровости. Пляска оживлялась всё более и более. Визави не могли ни на минуту обратить на себя внимания и даже не старались о том. Всё было занято графом и Марьею Дмитриевной. Наташа дергала за рукава и платье всех присутствовавших, которые и без того не спускали глаз с танцующих, и требовала, чтоб смотрели на папеньку. Граф в промежутках танца тяжело переводил дух, махал и кричал музыкантам, чтоб они играли скорее. Скорее, скорее и скорее, лише, лише и лише развертывался граф, то на цыпочках, то на каблуках, носясь вокруг Марьи Дмитриевны и, наконец, повернув свою даму к ее месту, сделал последнее па, подняв сзади кверху свою мягкую ногу, склонив вспотевшую голову с улыбающимся лицом и округло размахнув правою рукой среди грохота рукоплесканий и хохота, особенно Наташи. Оба танцующие остановились, тяжело переводя дыхание и утираясь батистовыми платками.
– Вот как в наше время танцовывали, ma chere, – сказал граф.
– Ай да Данила Купор! – тяжело и продолжительно выпуская дух и засучивая рукава, сказала Марья Дмитриевна.


В то время как у Ростовых танцовали в зале шестой англез под звуки от усталости фальшививших музыкантов, и усталые официанты и повара готовили ужин, с графом Безухим сделался шестой удар. Доктора объявили, что надежды к выздоровлению нет; больному дана была глухая исповедь и причастие; делали приготовления для соборования, и в доме была суетня и тревога ожидания, обыкновенные в такие минуты. Вне дома, за воротами толпились, скрываясь от подъезжавших экипажей, гробовщики, ожидая богатого заказа на похороны графа. Главнокомандующий Москвы, который беспрестанно присылал адъютантов узнавать о положении графа, в этот вечер сам приезжал проститься с знаменитым Екатерининским вельможей, графом Безухим.
Великолепная приемная комната была полна. Все почтительно встали, когда главнокомандующий, пробыв около получаса наедине с больным, вышел оттуда, слегка отвечая на поклоны и стараясь как можно скорее пройти мимо устремленных на него взглядов докторов, духовных лиц и родственников. Князь Василий, похудевший и побледневший за эти дни, провожал главнокомандующего и что то несколько раз тихо повторил ему.
Проводив главнокомандующего, князь Василий сел в зале один на стул, закинув высоко ногу на ногу, на коленку упирая локоть и рукою закрыв глаза. Посидев так несколько времени, он встал и непривычно поспешными шагами, оглядываясь кругом испуганными глазами, пошел чрез длинный коридор на заднюю половину дома, к старшей княжне.
Находившиеся в слабо освещенной комнате неровным шопотом говорили между собой и замолкали каждый раз и полными вопроса и ожидания глазами оглядывались на дверь, которая вела в покои умирающего и издавала слабый звук, когда кто нибудь выходил из нее или входил в нее.
– Предел человеческий, – говорил старичок, духовное лицо, даме, подсевшей к нему и наивно слушавшей его, – предел положен, его же не прейдеши.
– Я думаю, не поздно ли соборовать? – прибавляя духовный титул, спрашивала дама, как будто не имея на этот счет никакого своего мнения.
– Таинство, матушка, великое, – отвечало духовное лицо, проводя рукою по лысине, по которой пролегало несколько прядей зачесанных полуседых волос.
– Это кто же? сам главнокомандующий был? – спрашивали в другом конце комнаты. – Какой моложавый!…
– А седьмой десяток! Что, говорят, граф то не узнает уж? Хотели соборовать?
– Я одного знал: семь раз соборовался.
Вторая княжна только вышла из комнаты больного с заплаканными глазами и села подле доктора Лоррена, который в грациозной позе сидел под портретом Екатерины, облокотившись на стол.
– Tres beau, – говорил доктор, отвечая на вопрос о погоде, – tres beau, princesse, et puis, a Moscou on se croit a la campagne. [прекрасная погода, княжна, и потом Москва так похожа на деревню.]
– N'est ce pas? [Не правда ли?] – сказала княжна, вздыхая. – Так можно ему пить?
Лоррен задумался.
– Он принял лекарство?
– Да.
Доктор посмотрел на брегет.
– Возьмите стакан отварной воды и положите une pincee (он своими тонкими пальцами показал, что значит une pincee) de cremortartari… [щепотку кремортартара…]
– Не пило слушай , – говорил немец доктор адъютанту, – чтопи с третий удар шивь оставался .
– А какой свежий был мужчина! – говорил адъютант. – И кому пойдет это богатство? – прибавил он шопотом.
– Окотник найдутся , – улыбаясь, отвечал немец.
Все опять оглянулись на дверь: она скрипнула, и вторая княжна, сделав питье, показанное Лорреном, понесла его больному. Немец доктор подошел к Лоррену.
– Еще, может, дотянется до завтрашнего утра? – спросил немец, дурно выговаривая по французски.
Лоррен, поджав губы, строго и отрицательно помахал пальцем перед своим носом.
– Сегодня ночью, не позже, – сказал он тихо, с приличною улыбкой самодовольства в том, что ясно умеет понимать и выражать положение больного, и отошел.

Между тем князь Василий отворил дверь в комнату княжны.
В комнате было полутемно; только две лампадки горели перед образами, и хорошо пахло куреньем и цветами. Вся комната была установлена мелкою мебелью шифоньерок, шкапчиков, столиков. Из за ширм виднелись белые покрывала высокой пуховой кровати. Собачка залаяла.
– Ах, это вы, mon cousin?
Она встала и оправила волосы, которые у нее всегда, даже и теперь, были так необыкновенно гладки, как будто они были сделаны из одного куска с головой и покрыты лаком.
– Что, случилось что нибудь? – спросила она. – Я уже так напугалась.
– Ничего, всё то же; я только пришел поговорить с тобой, Катишь, о деле, – проговорил князь, устало садясь на кресло, с которого она встала. – Как ты нагрела, однако, – сказал он, – ну, садись сюда, causons. [поговорим.]