Диффузия

Поделись знанием:
(перенаправлено с «Уравнение Фика»)
Перейти к: навигация, поиск

Диффу́зия (лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму[1]. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (вдоль вектора градиента концентрации).

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы.

Скорость протекания диффузии зависит от многих факторов. Так, в случае металлического стержня тепловая диффузия проходит с огромной скоростью. Если же стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно. Диффузия молекул в общем случае протекает ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом, то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микронов только через несколько тысяч лет. Другой пример: на золотой слиток был положен слиток свинца, и под грузом за пять лет свинцовый слиток проник в золотой слиток на сантиметр.

Первое количественное описание процессов диффузии было дано немецким физиологом А. Фиком в 1855 году.





Общее описание

Все виды диффузии подчиняются одним законам. Скорость диффузии пропорциональна площади поперечного сечения образца, а также разности концентраций, температур или зарядов (в случае относительно небольших величин этих параметров). Так, тепло будет в четыре раза быстрее распространяться через стержень диаметром в два сантиметра, чем через стержень диаметром в один сантиметр. Это тепло будет распространяться быстрее, если перепад температур на одном сантиметре будет 10 °C вместо 5 °C. Скорость диффузии пропорциональна также параметру, характеризующему конкретный материал. В случае тепловой диффузии этот параметр называется теплопроводность, в случае потока электрических зарядов — электропроводность. Количество вещества, которое диффундирует в течение определённого времени, и расстояние, проходимое диффундирующим веществом, пропорциональны квадратному корню продолжительности диффузии.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул[2]. Скорость диффузии в связи с этим пропорциональна средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно-лучевых трубок (ЭЛТ) применяется металлический торий, продиффундировавший через металлический вольфрам при 2000 °C.

Если в смеси газов масса одной молекулы в четыре раза больше другой, то такая молекула передвигается в два раза медленнее по сравнению с её движением в чистом газе. Соответственно, скорость диффузии её также ниже. Эта разница в скорости диффузии лёгких и тяжёлых молекул применяется, чтобы разделять субстанции с различными молекулярными весами. В качестве примера можно привести разделение изотопов. Если газ, содержащий два изотопа, пропускать через пористую мембрану, более лёгкие изотопы проникают через мембрану быстрее, чем тяжёлые. Для лучшего разделения процесс производится в несколько этапов. Этот процесс широко применялся для разделения изотопов урана (отделение 235U от основной массы 238U). Поскольку такой способ разделения требует больших энергетических затрат, были развиты другие, более экономичные способы разделения. Например, широко развито применение термодиффузии в газовой среде. Газ, содержащий смесь изотопов, помещается в камеру, в которой поддерживается пространственный перепад (градиент) температур. При этом тяжёлые изотопы со временем концентрируются в холодной области.

Модели диффузии

Уравнения Фика

С точки зрения термодинамики движущим потенциалом любого выравнивающего процесса является рост энтропии. При постоянных давлении и температуре в роли такого потенциала выступает химический потенциал µ, обусловливающий поддержание потоков вещества. Поток частиц вещества пропорционален при этом градиенту потенциала

<math> J </math> ~ <math> -C \left(\frac{\partial \mu}{\partial x}\right)_{p,T}</math>

В большинстве практических случаев вместо химического потенциала применяется концентрация C. Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал перестаёт быть связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то вышеприведённую формулу можно заменить на следующую:

<math>J = - D \frac{\partial C}{\partial x}</math>

которая показывает, что плотность потока вещества J [<math>\mathrm{cm^{-2}s^{-1}}</math>] пропорциональна коэффициенту диффузии D [(<math>\mathrm{cm^2s^{-1}}</math>)] и градиенту концентрации. Это уравнение выражает первый закон Фика. Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

<math>\frac{\partial C}{\partial t} = {\partial\over\partial x} D \frac{\partial C}{\partial x}</math>

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса.

Дополнительное поле, наложенное параллельно градиенту химического потенциала, нарушает стационарное состояние. В этом случае диффузионные процессы описываются нелинейным уравнением Фоккера—Планка. Процессы диффузии имеют большое значение в природе:

  • Питание, дыхание животных и растений;
  • Проникновение кислорода из крови в ткани человека.

Геометрическое описание уравнения Фика

Во втором уравнении Фика в левой части стоит скорость изменения концентрации во времени, а в правой части уравнения — вторая частная производная, которая выражает пространственное распределение концентрации, в частности, выпуклость функции распределения температур, проецируемую на ось х.

Уравнения Онзагера для многокомпонентной диффузии и термодиффузии

Законы Фика применимы для случая малых значений концентраций <math>n</math> и градиентов концентрации <math>-\nabla n</math>.

В 1931 году, Ларс Онзагер[3] предложил модель для описания процессов переноса многокомпонентной среды в случае линейных термодинамических неравновесных систем:

<math>\mathbf{J}_i=\sum_j L_{ij} X_j \, ,</math>

здесь <math>\mathbf{J}_i</math> — поток i-ой компоненты и <math>X_j</math> — термодинамическая сила.

Термодинамическая сила по Онзагеру определяется как градиент от частной производной энтропии (термин «сила» Онзагер брал в кавычки, поскольку здесь подразумевается «движущая сила»):

<math>X_i= {\rm grad} \frac {\partial s(n)}{\partial n_i}\ ,</math>

здесь <math>n_i</math> — «термодинамические координаты». Для тепло- и массопереноса мы можем положить <math>n_0=u</math> (плотность внутренней энергии) и <math>n_i</math> это концентрация i-ой компоненты. Соответствующее значение движущих сил в таком случае выражаются следующим образом:

<math>X_0= {\rm grad} \frac{1}{T}\ , \;\;\; X_i= - {\rm grad} \frac{\mu_i}{T}\; (i >0) ,</math> поскольку <math>{\rm d}s=\frac{1}{T}{\rm d}u-\sum_{i \geq 1}\frac{\mu_i}{T} {\rm d} n_i</math>

здесь T — температура и <math>\mu_i</math> — химический потенциал i-ой компоненты. Следует отметить, что данное рассмотрение приводится без учета движения среды, поэтому мы здесь пренебрегаем членом с производной давления. Такое рассмотрение возможно в случае малых концентраций примесей с малыми градиентами.

В линейном приближении вблизи точки равновесия мы можем выразить термодинамические силы следующим образом:

<math>X_i= \sum_{k \geq 0} \left.\frac{\partial^2 s(n)}{\partial n_i \partial n_k}\right|_{n=n^*} {\rm grad} n_k \ ,</math>

Матрица кинетических коэффициентов <math>L_{ij}</math> должна быть симметричной (Теорема Онзагера) и положительно определенной (в случае роста энтропии).

Транспортное уравнение в таком случае может быть записано в следующем виде:

<math>\frac{\partial n_i}{\partial t}= - {\rm div} \mathbf{J}_i =- \sum_{j\geq 0} L_{ij}{\rm div} X_j = \sum_{k\geq 0} \left[-\sum_{j\geq 0} L_{ij} \left.\frac{\partial^2 s(n)}{\partial n_j \partial n_k}\right|_{n=n^*}\right] \Delta n_k\ .</math>

Здесь индексы i, j, k=0,1,2,… относятся к внутренней энергии (0) и разным компонентам. Выражение в квадратных скобках является матрицей <math>D_{ik}</math> диффузионных(i, k>0), термодиффузионных (i>0, k=0 or k>0, i=0) и температуропроводных (i=k=0) коэффициентов.

В изотермическом случае T=const и термодинамический потенциал выражается через свободную энергию (или свободную энтропию (англ.)). Термодинамическая движущая сила для изотермичной диффузии определяется отрицательным градиентом химического потенциала <math>-(1/T)\nabla\mu_j</math>, и матрица диффузионных коэффициентов выглядит следующим образом:

<math>D_{ik}=\frac{1}{T}\sum_{j\geq 1} L_{ij} \left.\frac{\partial \mu_j(n,T)}{ \partial n_k}\right|_{n=n^*}</math>

(i, k>0).

Существует произвол в выборе определения для термодинамических сил и кинетических коэффициентов, поскольку мы не можем измерить их отдельно, а только их комбинацию <math>\sum_j L_{ij}X_j</math>. Например, в оригинальной работе Онзагер[3] использовал дополнительный множитель T, тогда как в курсе теоретической физики Ландау и Лифшица[4] этот множитель отсутствует и сила имеет противоположный знак. Это различие можно учесть в формулах для вывода коэффициентов так, что они не повлияют на результаты измерения.

Недиагональная диффузия должна быть нелинейной

Формализм линейной необратимой термодинамики (Онзагера) генерирует систему линейных уравнений диффузии в виде

<math>\frac{\partial n_i}{\partial t} =\sum_j D_{ij} \Delta c_j \, .</math>

Если матрица коэффициентов диффузии диагональна, то эта система уравнений является лишь системой независимых уравнений Фика для различных компонент. Предположим, что диффузия не является диагональной, например, <math>D_{12}\neq 0</math>, и рассмотрим состояние, в котором <math>c_2= \ldots = c_n=0</math>. В этом состоянии <math>\partial n_2/ \partial t = D_{12} \Delta n_1</math>. Если в некоторой точке <math>D_{12} \Delta n_1(x) < 0</math> то <math>n_2(x)</math> в течение короткого времени становится отрицательным в этой точке. Поэтому линейная недиагональная диффузии не сохраняет положительность концентраций. Недиагональные уравнения многокомпонентной диффузии должен быть нелинейными.[5]

Диффузия в пористых средах

См. также

Напишите отзыв о статье "Диффузия"

Примечания

  1. Б. С. Бокшейн. Атомы блуждают по кристаллу. С. 9—11
  2. J. Philibert (2005). [www.rz.uni-leipzig.de/diffusion/pdf/volume2/diff_fund_2(2005)1.pdf One and a half century of diffusion: Fick, Einstein, before and beyond.] Diffusion Fundamentals, 2, 1.1-1.10.
  3. 1 2 Onsager, L. (1931). «Reciprocal Relations in Irreversible Processes. I». Physical Review 37 (4): 405–426. DOI:10.1103/PhysRev.37.405. Bibcode: [adsabs.harvard.edu/abs/1931PhRv...37..405O 1931PhRv...37..405O].
  4. Ландау, Л. Д., Лифшиц, Е. М. Статистическая физика. Часть 1. — Издание 5-е. — М.: Физматлит, 2005. — 616 с. — («Теоретическая физика», том V). — ISBN 5-9221-0054-8.
  5. A.N. Gorban, H.P. Sargsyan and H.A. Wahab (2011). «[arxiv.org/abs/1012.2908 Quasichemical Models of Multicomponent Nonlinear Diffusion]». Mathematical Modelling of Natural Phenomena 6 (5): 184–262. DOI:10.1051/mmnp/20116509.

Литература

  • Бокштейн Б. С. Атомы блуждают по кристаллу. — М.: Наука, 1984. — 208 с. — (Библиотечка «Квант». Вып. 28). — 150 000 экз.

Ссылки

  • [www.scientific.ru/journal/physnews250201.html Диффузия примесных атомов на поверхности монокристалла]
  • [www.chemport.ru/chemical_encyclopedia_article_1184.html Диффузия. Статья из Химической энциклопедии]

Отрывок, характеризующий Диффузия

Княжна Марья действительно сконфузилась и покраснела пятнами, когда вошли к ней. В ее уютной комнате с лампадами перед киотами, на диване, за самоваром сидел рядом с ней молодой мальчик с длинным носом и длинными волосами, и в монашеской рясе.
На кресле, подле, сидела сморщенная, худая старушка с кротким выражением детского лица.
– Andre, pourquoi ne pas m'avoir prevenu? [Андрей, почему не предупредили меня?] – сказала она с кротким упреком, становясь перед своими странниками, как наседка перед цыплятами.
– Charmee de vous voir. Je suis tres contente de vous voir, [Очень рада вас видеть. Я так довольна, что вижу вас,] – сказала она Пьеру, в то время, как он целовал ее руку. Она знала его ребенком, и теперь дружба его с Андреем, его несчастие с женой, а главное, его доброе, простое лицо расположили ее к нему. Она смотрела на него своими прекрасными, лучистыми глазами и, казалось, говорила: «я вас очень люблю, но пожалуйста не смейтесь над моими ». Обменявшись первыми фразами приветствия, они сели.
– А, и Иванушка тут, – сказал князь Андрей, указывая улыбкой на молодого странника.
– Andre! – умоляюще сказала княжна Марья.
– Il faut que vous sachiez que c'est une femme, [Знай, что это женщина,] – сказал Андрей Пьеру.
– Andre, au nom de Dieu! [Андрей, ради Бога!] – повторила княжна Марья.
Видно было, что насмешливое отношение князя Андрея к странникам и бесполезное заступничество за них княжны Марьи были привычные, установившиеся между ними отношения.
– Mais, ma bonne amie, – сказал князь Андрей, – vous devriez au contraire m'etre reconaissante de ce que j'explique a Pierre votre intimite avec ce jeune homme… [Но, мой друг, ты должна бы быть мне благодарна, что я объясняю Пьеру твою близость к этому молодому человеку.]
– Vraiment? [Правда?] – сказал Пьер любопытно и серьезно (за что особенно ему благодарна была княжна Марья) вглядываясь через очки в лицо Иванушки, который, поняв, что речь шла о нем, хитрыми глазами оглядывал всех.
Княжна Марья совершенно напрасно смутилась за своих. Они нисколько не робели. Старушка, опустив глаза, но искоса поглядывая на вошедших, опрокинув чашку вверх дном на блюдечко и положив подле обкусанный кусочек сахара, спокойно и неподвижно сидела на своем кресле, ожидая, чтобы ей предложили еще чаю. Иванушка, попивая из блюдечка, исподлобья лукавыми, женскими глазами смотрел на молодых людей.
– Где, в Киеве была? – спросил старуху князь Андрей.
– Была, отец, – отвечала словоохотливо старуха, – на самое Рожество удостоилась у угодников сообщиться святых, небесных тайн. А теперь из Колязина, отец, благодать великая открылась…
– Что ж, Иванушка с тобой?
– Я сам по себе иду, кормилец, – стараясь говорить басом, сказал Иванушка. – Только в Юхнове с Пелагеюшкой сошлись…
Пелагеюшка перебила своего товарища; ей видно хотелось рассказать то, что она видела.
– В Колязине, отец, великая благодать открылась.
– Что ж, мощи новые? – спросил князь Андрей.
– Полно, Андрей, – сказала княжна Марья. – Не рассказывай, Пелагеюшка.
– Ни… что ты, мать, отчего не рассказывать? Я его люблю. Он добрый, Богом взысканный, он мне, благодетель, рублей дал, я помню. Как была я в Киеве и говорит мне Кирюша юродивый – истинно Божий человек, зиму и лето босой ходит. Что ходишь, говорит, не по своему месту, в Колязин иди, там икона чудотворная, матушка пресвятая Богородица открылась. Я с тех слов простилась с угодниками и пошла…
Все молчали, одна странница говорила мерным голосом, втягивая в себя воздух.
– Пришла, отец мой, мне народ и говорит: благодать великая открылась, у матушки пресвятой Богородицы миро из щечки каплет…
– Ну хорошо, хорошо, после расскажешь, – краснея сказала княжна Марья.
– Позвольте у нее спросить, – сказал Пьер. – Ты сама видела? – спросил он.
– Как же, отец, сама удостоилась. Сияние такое на лике то, как свет небесный, а из щечки у матушки так и каплет, так и каплет…
– Да ведь это обман, – наивно сказал Пьер, внимательно слушавший странницу.
– Ах, отец, что говоришь! – с ужасом сказала Пелагеюшка, за защитой обращаясь к княжне Марье.
– Это обманывают народ, – повторил он.
– Господи Иисусе Христе! – крестясь сказала странница. – Ох, не говори, отец. Так то один анарал не верил, сказал: «монахи обманывают», да как сказал, так и ослеп. И приснилось ему, что приходит к нему матушка Печерская и говорит: «уверуй мне, я тебя исцелю». Вот и стал проситься: повези да повези меня к ней. Это я тебе истинную правду говорю, сама видела. Привезли его слепого прямо к ней, подошел, упал, говорит: «исцели! отдам тебе, говорит, в чем царь жаловал». Сама видела, отец, звезда в ней так и вделана. Что ж, – прозрел! Грех говорить так. Бог накажет, – поучительно обратилась она к Пьеру.
– Как же звезда то в образе очутилась? – спросил Пьер.
– В генералы и матушку произвели? – сказал князь Aндрей улыбаясь.
Пелагеюшка вдруг побледнела и всплеснула руками.
– Отец, отец, грех тебе, у тебя сын! – заговорила она, из бледности вдруг переходя в яркую краску.
– Отец, что ты сказал такое, Бог тебя прости. – Она перекрестилась. – Господи, прости его. Матушка, что ж это?… – обратилась она к княжне Марье. Она встала и чуть не плача стала собирать свою сумочку. Ей, видно, было и страшно, и стыдно, что она пользовалась благодеяниями в доме, где могли говорить это, и жалко, что надо было теперь лишиться благодеяний этого дома.
– Ну что вам за охота? – сказала княжна Марья. – Зачем вы пришли ко мне?…
– Нет, ведь я шучу, Пелагеюшка, – сказал Пьер. – Princesse, ma parole, je n'ai pas voulu l'offenser, [Княжна, я право, не хотел обидеть ее,] я так только. Ты не думай, я пошутил, – говорил он, робко улыбаясь и желая загладить свою вину. – Ведь это я, а он так, пошутил только.
Пелагеюшка остановилась недоверчиво, но в лице Пьера была такая искренность раскаяния, и князь Андрей так кротко смотрел то на Пелагеюшку, то на Пьера, что она понемногу успокоилась.


Странница успокоилась и, наведенная опять на разговор, долго потом рассказывала про отца Амфилохия, который был такой святой жизни, что от ручки его ладоном пахло, и о том, как знакомые ей монахи в последнее ее странствие в Киев дали ей ключи от пещер, и как она, взяв с собой сухарики, двое суток провела в пещерах с угодниками. «Помолюсь одному, почитаю, пойду к другому. Сосну, опять пойду приложусь; и такая, матушка, тишина, благодать такая, что и на свет Божий выходить не хочется».
Пьер внимательно и серьезно слушал ее. Князь Андрей вышел из комнаты. И вслед за ним, оставив божьих людей допивать чай, княжна Марья повела Пьера в гостиную.
– Вы очень добры, – сказала она ему.
– Ах, я право не думал оскорбить ее, я так понимаю и высоко ценю эти чувства!
Княжна Марья молча посмотрела на него и нежно улыбнулась. – Ведь я вас давно знаю и люблю как брата, – сказала она. – Как вы нашли Андрея? – спросила она поспешно, не давая ему времени сказать что нибудь в ответ на ее ласковые слова. – Он очень беспокоит меня. Здоровье его зимой лучше, но прошлой весной рана открылась, и доктор сказал, что он должен ехать лечиться. И нравственно я очень боюсь за него. Он не такой характер как мы, женщины, чтобы выстрадать и выплакать свое горе. Он внутри себя носит его. Нынче он весел и оживлен; но это ваш приезд так подействовал на него: он редко бывает таким. Ежели бы вы могли уговорить его поехать за границу! Ему нужна деятельность, а эта ровная, тихая жизнь губит его. Другие не замечают, а я вижу.
В 10 м часу официанты бросились к крыльцу, заслышав бубенчики подъезжавшего экипажа старого князя. Князь Андрей с Пьером тоже вышли на крыльцо.
– Это кто? – спросил старый князь, вылезая из кареты и угадав Пьера.
– AI очень рад! целуй, – сказал он, узнав, кто был незнакомый молодой человек.
Старый князь был в хорошем духе и обласкал Пьера.
Перед ужином князь Андрей, вернувшись назад в кабинет отца, застал старого князя в горячем споре с Пьером.
Пьер доказывал, что придет время, когда не будет больше войны. Старый князь, подтрунивая, но не сердясь, оспаривал его.
– Кровь из жил выпусти, воды налей, тогда войны не будет. Бабьи бредни, бабьи бредни, – проговорил он, но всё таки ласково потрепал Пьера по плечу, и подошел к столу, у которого князь Андрей, видимо не желая вступать в разговор, перебирал бумаги, привезенные князем из города. Старый князь подошел к нему и стал говорить о делах.
– Предводитель, Ростов граф, половины людей не доставил. Приехал в город, вздумал на обед звать, – я ему такой обед задал… А вот просмотри эту… Ну, брат, – обратился князь Николай Андреич к сыну, хлопая по плечу Пьера, – молодец твой приятель, я его полюбил! Разжигает меня. Другой и умные речи говорит, а слушать не хочется, а он и врет да разжигает меня старика. Ну идите, идите, – сказал он, – может быть приду, за ужином вашим посижу. Опять поспорю. Мою дуру, княжну Марью полюби, – прокричал он Пьеру из двери.
Пьер теперь только, в свой приезд в Лысые Горы, оценил всю силу и прелесть своей дружбы с князем Андреем. Эта прелесть выразилась не столько в его отношениях с ним самим, сколько в отношениях со всеми родными и домашними. Пьер с старым, суровым князем и с кроткой и робкой княжной Марьей, несмотря на то, что он их почти не знал, чувствовал себя сразу старым другом. Они все уже любили его. Не только княжна Марья, подкупленная его кроткими отношениями к странницам, самым лучистым взглядом смотрела на него; но маленький, годовой князь Николай, как звал дед, улыбнулся Пьеру и пошел к нему на руки. Михаил Иваныч, m lle Bourienne с радостными улыбками смотрели на него, когда он разговаривал с старым князем.
Старый князь вышел ужинать: это было очевидно для Пьера. Он был с ним оба дня его пребывания в Лысых Горах чрезвычайно ласков, и велел ему приезжать к себе.
Когда Пьер уехал и сошлись вместе все члены семьи, его стали судить, как это всегда бывает после отъезда нового человека и, как это редко бывает, все говорили про него одно хорошее.


Возвратившись в этот раз из отпуска, Ростов в первый раз почувствовал и узнал, до какой степени сильна была его связь с Денисовым и со всем полком.
Когда Ростов подъезжал к полку, он испытывал чувство подобное тому, которое он испытывал, подъезжая к Поварскому дому. Когда он увидал первого гусара в расстегнутом мундире своего полка, когда он узнал рыжего Дементьева, увидал коновязи рыжих лошадей, когда Лаврушка радостно закричал своему барину: «Граф приехал!» и лохматый Денисов, спавший на постели, выбежал из землянки, обнял его, и офицеры сошлись к приезжему, – Ростов испытывал такое же чувство, как когда его обнимала мать, отец и сестры, и слезы радости, подступившие ему к горлу, помешали ему говорить. Полк был тоже дом, и дом неизменно милый и дорогой, как и дом родительский.
Явившись к полковому командиру, получив назначение в прежний эскадрон, сходивши на дежурство и на фуражировку, войдя во все маленькие интересы полка и почувствовав себя лишенным свободы и закованным в одну узкую неизменную рамку, Ростов испытал то же успокоение, ту же опору и то же сознание того, что он здесь дома, на своем месте, которые он чувствовал и под родительским кровом. Не было этой всей безурядицы вольного света, в котором он не находил себе места и ошибался в выборах; не было Сони, с которой надо было или не надо было объясняться. Не было возможности ехать туда или не ехать туда; не было этих 24 часов суток, которые столькими различными способами можно было употребить; не было этого бесчисленного множества людей, из которых никто не был ближе, никто не был дальше; не было этих неясных и неопределенных денежных отношений с отцом, не было напоминания об ужасном проигрыше Долохову! Тут в полку всё было ясно и просто. Весь мир был разделен на два неровные отдела. Один – наш Павлоградский полк, и другой – всё остальное. И до этого остального не было никакого дела. В полку всё было известно: кто был поручик, кто ротмистр, кто хороший, кто дурной человек, и главное, – товарищ. Маркитант верит в долг, жалованье получается в треть; выдумывать и выбирать нечего, только не делай ничего такого, что считается дурным в Павлоградском полку; а пошлют, делай то, что ясно и отчетливо, определено и приказано: и всё будет хорошо.