Закон сохранения импульса

Поделись знанием:
Перейти к: навигация, поиск
   Механика сплошных сред
Сплошная среда
См. также: Портал:Физика

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю[1].

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении системы в пустом пространстве импульс сохраняется во времени, а при наличии внешнего воздействия скорость изменения импульса определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной из фундаментальных симметрий, — однородностью пространства[2].

Закон сохранения импульса впервые был сформулирован Р. Декартом[3]





Вывод в механике Ньютона

Согласно второму закону Ньютона для системы из N частиц:

<math> \frac{d\vec {p}}{dt} =\vec {F} ,</math>

где <math>\vec {p}</math> импульс системы

<math>\vec{p}= \sum_{n=1}^{N}\vec{p}_n,</math>

а <math>\vec {F}</math> — равнодействующая всех сил, действующих на частицы системы

<math>\vec{F}= \sum_{k=1}^{N} \ \vec{F}^{ext}_{k}+\sum_{n=1}^{N} \sum_{m=1}^{N} \ \vec{F}_{n,m} , \qquad m\ne n, \qquad\qquad (1)</math>

Здесь <math>\vec{F}_{n,m}= </math> — равнодействующая сил, действующим на n-ю частицу со стороны m-ой, а <math> \vec{F}^{ext}_{k} </math> — равнодействующая всех внешних сил, действующих k-ю частицу. Согласно третьему закону Ньютона, силы вида <math>\vec {F}_{n,m} </math> и <math>\vec {F}_{m,n} </math> будут равны по абсолютному значению и противоположны по направлению, то есть <math>\vec{F}_{n,m} = -\vec{F}_{m,n}.</math>. Поэтому вторая сумма в правой части выражения (1) будет равна нулю, и получаем, что производная импульса системы по времени равна векторной сумме всех внешних сил, действующих на систему:

<math>\frac{d\vec {p}}{dt}= \sum_{k=1}^{N} \ \vec{F}^{ext}_{k} \qquad\qquad (2).</math>

Внутренние силы исключаются третьим законом Ньютона.

Для систем из N частиц, в которых сумма всех внешних сил равна нулю

<math> \sum_{k=1}^{N} \ \vec{F}^{ext}_{k} =0, </math>

или для систем, на частицы которых не действуют внешние силы <math> \vec{F}^{ext}_{k} =0,</math> (для всех k от 1 до n), имеем

<math>\qquad \frac {d}{dt} \sum_{n=1}^{N}\vec{p}_n=0.</math>

Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:

<math>\sum_{n=1}^{N}\vec{p}_n=\overrightarrow {\mathrm{const}} \qquad</math> (постоянный вектор).

То есть суммарный импульс системы из N частиц, где N любое целое число, есть величина постоянная. При N=1 получаем выражение для одной частицы. Таким образом, следует вывод[1]:

Если векторная сумма всех внешних сил, действующих на систему, равна нулю, то импульс системы сохраняется, то есть не меняется со временем.


Закон сохранения импульса выполняется не только для систем, на которые не действуют внешние силы, он справедлив и в тех случаях, когда сумма всех внешних сил, действующих на систему, равна нулю. То есть отсутствие внешних сил, действующих на систему, достаточно, но не необходимо для выполнения закона сохранения импульса.

Если проекция суммы внешних сил на какую-либо направление или координатную ось равна нулю, то в этом случае говорят о законе сохранения проекции импульса на данное направление или координатную ось.

Связь с однородностью пространства

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
Трансляции времени Однородность
времени
…энергии
C, P, CP и T-симметрии Изотропность
времени
…чётности
Трансляции пространства Однородность
пространства
…импульса
Вращения пространства Изотропность
пространства
…момента
импульса
Группа Лоренца Относительность
Лоренц-инвариантность
…4-импульса
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Согласно теореме Нётер каждому закону сохранения ставится в соответствие некая симметрия уравнений, описывающих систему. В частности, закон сохранения импульса эквивалентен однородности пространства, то есть независимости всех законов, описывающих систему, от положения системы в пространстве. Простейший вывод этого утверждения основан на применении лагранжева подхода к описанию системы.

Вывод из закона сохранения энергии

Рассмотрим систему нескольких соударяющихся упругим образом (без превращения части механической энергии в другие формы) частиц с массами <math>m_{i}</math> и скоростями <math>u_{i}</math> до столкновений и <math>U_{i}</math> после столкновений. Закон сохранения энергии имеет вид <math>\frac{1}{2}\sum_{i}m_{i}u_{i}^{2}=\frac{1}{2}\sum_{i}m_{i}U_{i}^{2}</math>. Перейдём в систему отсчёта, равномерно и прямолинейно движущуюся со скоростью <math>v</math>. Скорости частиц с точки зрения этой системы отсчёта будут <math>u_{i} - v</math> до столкновений и <math>U_{i} - v</math> после столкновений. Закон сохранения энергии с точки зрения этой системы имеет вид <math>\frac{1}{2}\sum_{i}m_{i}{(u_{i} - v)}^{2}=\frac{1}{2}\sum_{i}m_{i}{(U_{i} - v)}^{2}</math>, или <math>\frac{1}{2}\sum_{i}m_{i}{(u_{i}^{2} - 2vu_{i}+{v}^{2})}=\frac{1}{2}\sum_{i}m_{i}{(U_{i}^{2} - 2vU_{i}+{v}^{2})}</math>, Следовательно <math>\sum_{i} m_{i} v u_{i} = \sum_{i} m_{i} v U_{i}</math>, откуда следует <math>v \sum_{i} m_{i} u_{i} = v \sum_{i} m_{i} U_{i}</math>. Поскольку скорость <math>v</math> произвольна, то последнее равенство будет справедливым только в случае выполнения закона сохранения импульса <math>\sum_{i} m_{i} u_{i} = \sum_{i} m_{i} U_{i}</math>[4].

Вывод из формализма Лагранжа

Рассмотрим функцию Лагранжа свободного тела <math>\mathcal L \equiv \mathcal L(q_i, \dot q_i, t),</math> зависящую от обобщённых координат <math>q_i\,,</math> обобщённых скоростей <math>\dot q_i</math> и времени t. Здесь точка над q обозначает дифференцирование по времени, <math>\dot q_i \equiv \frac{\partial q_i}{\partial t}.</math> Выберем для рассмотрения прямоугольную декартову систему координат, тогда <math>q_i=\vec r_a, \ \dot q_i = \vec v_a</math> для каждой <math>a</math>-той частицы. Используя однородность пространства, мы можем дать всем радиус-векторам частиц одинаковое приращение, которое не будет влиять на уравнения движения: <math>\vec r_a \to \vec r_a + \vec{\xi}, </math> где <math>\vec{\xi} \equiv \overrightarrow {\mathrm{const}}.</math> В случае постоянства скорости функция Лагранжа изменится следующим образом:

<math>\delta \mathcal L = \sum_{a}\frac{\partial\mathcal L}{\partial \vec r_a} \delta \vec r_a = \vec{\xi}\ \sum_{a} \frac{\partial \mathcal L}{\partial \vec r_a}, </math>

, где суммирование идет по всем частицам системы. Так как приращение не влияет на уравнения движения, то вариация функции Лагранжа должна быть равной нулю: <math>\delta \mathcal L =0.</math> С учётом того, что вектор <math>\vec \xi</math> — произвольный, последнее требование выполняется при:

<math>\sum_{a} \frac{\partial \mathcal L}{\partial \vec r_a}=0.</math>

Воспользуемся уравнением Лагранжа <math>\frac{d}{dt}\frac{\partial \mathcal L}{\partial \dot q_i}-\frac{\partial \mathcal L}{\partial q_i}=0:</math>

<math>\sum_{a} \frac{\partial \mathcal L}{\partial \vec r_a} = \sum_{a}\frac{d}{dt}\frac{\partial \mathcal L}{\partial \vec v_a} = \frac{d}{dt}\sum_{a}\frac{\partial \mathcal L}{\partial \vec v_a} = 0 .</math>

Это означает, что сумма, стоящая под знаком дифференциала, — постоянная величина для рассматриваемой системы. Сама сумма и есть суммарный импульс системы:

<math>\vec P = \sum_{a}\frac{\partial \mathcal L}{\partial \vec v_a} = \overrightarrow {\mathrm{const}}. </math>.

Учитывая, что лагранжиан свободной частицы имеет вид: <math>\mathcal L = \frac{mv^2}{2},</math> нетрудно видеть, что последнее выражение совпадает с выражением в ньютоновом формализме:

<math>\vec P = \sum_a m_a \vec v_a = \overrightarrow {\mathrm{const}}.</math>

Для релятивистской свободной частицы лагранжиан имеет несколько другую форму: <math>\mathcal L = -mc^2\sqrt{1-\frac{v^2}{c^2}},</math> что приводит к релятивистскому определению импульса

<math>\vec P = \sum_a \frac{m_a \vec v_a}{\sqrt{1-\frac{v^2}{c^2}}} = \overrightarrow {\mathrm{const}}.</math>

В настоящее время не существует каких-либо экспериментальных фактов, свидетельствующих о невыполнении закона сохранения импульса.

Закон сохранения импульса в квантовой механике

Закон сохранения импульса выполняется и в квантовой механике[5]. В тех явлениях, когда проявляются корпускулярные свойства частиц, их импульс, как и в классической механике, равен <math>p=mv</math>, а когда проявляются волновые свойства частиц, их импульс равен <math>p=\frac{\hbar}{\lambda}</math>, где <math>\lambda</math> - длина волны[6]. В квантовой механике закон сохранения импульса является следствием симметрии относительно сдвигов по координатам[7].

Закон сохранения импульса в теории относительности

Закон сохранения импульса выполняется и в теории относительности. Отличие от классической механики состоит лишь в том, что в теории относительности зависимость импульса от скорости имеет вид: <math>p=\frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}</math>[8][5].

В общей теории относительности, аналогично ситуации с законом сохранения энергии, при переходе к искривлённому пространству-времени закон сохранения импульса, выражаемый пространственными компонентами соотношения для тензора энергии-импульса

<math>T^\mu_{\nu;\mu}=0,</math>

где точка с запятой выражает ковариантную производную, приводит лишь к локально сохраняющимся величинам. Это связано с отсутствием глобальной однородности пространства в пространстве-времени общего вида.

Можно придумать такие определения импульса гравитационного поля, что глобальный закон сохранения импульса будет выполняться при движении во времени системы тел и полей, но все такие определения содержат элемент произвола, так как вводимый импульс гравитационного поля не может быть тензорной величиной при произвольных преобразованиях координат.

См. также

Напишите отзыв о статье "Закон сохранения импульса"

Ссылки

  • [www.youtube.com/watch?feature=plpp&v=GdoZwHDYmp8 Опыт с шарами по демонстрации закона сохранения импульса] (видео)

Литература

  • Кузнецов Б. Г. Принципы классической физики. — М.: АН СССР, 1958. — 321 с.
  • Фейнман Р. Ф. Фейнмановские лекции по физике. Вып. 1 Современная наука о природе. Законы механики.. — М.: Едиториал УРСС, 2004. — 440 с. — ISBN 5-354-00699-6.
  • Широков Ю. М., Юдин Н. П. Ядерная физика. — М.: Наука, 1972. — 670 с.
  • Готт В. С. Философские вопросы современной физики. — М.: Высшая школа, 1972. — 416 с.
  • Ферми Э. Квантовая механика. — М.: Мир, 1968. — 367 с.

Примечания

  1. 1 2 Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 282. — 416 с. — ISBN 5-06-003117-9.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. — 4-е изд., испр. — М.: «Наука», 1988. — Т. I. Механика. — С. 26. — 215 с. — ISBN 5-02-013850-9.
  3. Готт, 1972, с. 222.
  4. Кузнецов, 1958, с. 135.
  5. 1 2 Широков, 1972, с. 276.
  6. Фейнман, 2004, с. 194.
  7. Ферми, 1968, с. 183.
  8. Фейнман, 2004, с. 193.
К:Википедия:Статьи без источников (тип: не указан)

Отрывок, характеризующий Закон сохранения импульса

– Что ты ходишь, как бесприютная? – сказала ей мать. – Что тебе надо?
– Его мне надо… сейчас, сию минуту мне его надо, – сказала Наташа, блестя глазами и не улыбаясь. – Графиня подняла голову и пристально посмотрела на дочь.
– Не смотрите на меня. Мама, не смотрите, я сейчас заплачу.
– Садись, посиди со мной, – сказала графиня.
– Мама, мне его надо. За что я так пропадаю, мама?… – Голос ее оборвался, слезы брызнули из глаз, и она, чтобы скрыть их, быстро повернулась и вышла из комнаты. Она вышла в диванную, постояла, подумала и пошла в девичью. Там старая горничная ворчала на молодую девушку, запыхавшуюся, с холода прибежавшую с дворни.
– Будет играть то, – говорила старуха. – На всё время есть.
– Пусти ее, Кондратьевна, – сказала Наташа. – Иди, Мавруша, иди.
И отпустив Маврушу, Наташа через залу пошла в переднюю. Старик и два молодые лакея играли в карты. Они прервали игру и встали при входе барышни. «Что бы мне с ними сделать?» подумала Наташа. – Да, Никита, сходи пожалуста… куда бы мне его послать? – Да, сходи на дворню и принеси пожалуста петуха; да, а ты, Миша, принеси овса.
– Немного овса прикажете? – весело и охотно сказал Миша.
– Иди, иди скорее, – подтвердил старик.
– Федор, а ты мелу мне достань.
Проходя мимо буфета, она велела подавать самовар, хотя это было вовсе не время.
Буфетчик Фока был самый сердитый человек из всего дома. Наташа над ним любила пробовать свою власть. Он не поверил ей и пошел спросить, правда ли?
– Уж эта барышня! – сказал Фока, притворно хмурясь на Наташу.
Никто в доме не рассылал столько людей и не давал им столько работы, как Наташа. Она не могла равнодушно видеть людей, чтобы не послать их куда нибудь. Она как будто пробовала, не рассердится ли, не надуется ли на нее кто из них, но ничьих приказаний люди не любили так исполнять, как Наташиных. «Что бы мне сделать? Куда бы мне пойти?» думала Наташа, медленно идя по коридору.
– Настасья Ивановна, что от меня родится? – спросила она шута, который в своей куцавейке шел навстречу ей.
– От тебя блохи, стрекозы, кузнецы, – отвечал шут.
– Боже мой, Боже мой, всё одно и то же. Ах, куда бы мне деваться? Что бы мне с собой сделать? – И она быстро, застучав ногами, побежала по лестнице к Фогелю, который с женой жил в верхнем этаже. У Фогеля сидели две гувернантки, на столе стояли тарелки с изюмом, грецкими и миндальными орехами. Гувернантки разговаривали о том, где дешевле жить, в Москве или в Одессе. Наташа присела, послушала их разговор с серьезным задумчивым лицом и встала. – Остров Мадагаскар, – проговорила она. – Ма да гас кар, – повторила она отчетливо каждый слог и не отвечая на вопросы m me Schoss о том, что она говорит, вышла из комнаты. Петя, брат ее, был тоже наверху: он с своим дядькой устраивал фейерверк, который намеревался пустить ночью. – Петя! Петька! – закричала она ему, – вези меня вниз. с – Петя подбежал к ней и подставил спину. Она вскочила на него, обхватив его шею руками и он подпрыгивая побежал с ней. – Нет не надо – остров Мадагаскар, – проговорила она и, соскочив с него, пошла вниз.
Как будто обойдя свое царство, испытав свою власть и убедившись, что все покорны, но что всё таки скучно, Наташа пошла в залу, взяла гитару, села в темный угол за шкапчик и стала в басу перебирать струны, выделывая фразу, которую она запомнила из одной оперы, слышанной в Петербурге вместе с князем Андреем. Для посторонних слушателей у ней на гитаре выходило что то, не имевшее никакого смысла, но в ее воображении из за этих звуков воскресал целый ряд воспоминаний. Она сидела за шкапчиком, устремив глаза на полосу света, падавшую из буфетной двери, слушала себя и вспоминала. Она находилась в состоянии воспоминания.
Соня прошла в буфет с рюмкой через залу. Наташа взглянула на нее, на щель в буфетной двери и ей показалось, что она вспоминает то, что из буфетной двери в щель падал свет и что Соня прошла с рюмкой. «Да и это было точь в точь также», подумала Наташа. – Соня, что это? – крикнула Наташа, перебирая пальцами на толстой струне.
– Ах, ты тут! – вздрогнув, сказала Соня, подошла и прислушалась. – Не знаю. Буря? – сказала она робко, боясь ошибиться.
«Ну вот точно так же она вздрогнула, точно так же подошла и робко улыбнулась тогда, когда это уж было», подумала Наташа, «и точно так же… я подумала, что в ней чего то недостает».
– Нет, это хор из Водоноса, слышишь! – И Наташа допела мотив хора, чтобы дать его понять Соне.
– Ты куда ходила? – спросила Наташа.
– Воду в рюмке переменить. Я сейчас дорисую узор.
– Ты всегда занята, а я вот не умею, – сказала Наташа. – А Николай где?
– Спит, кажется.
– Соня, ты поди разбуди его, – сказала Наташа. – Скажи, что я его зову петь. – Она посидела, подумала о том, что это значит, что всё это было, и, не разрешив этого вопроса и нисколько не сожалея о том, опять в воображении своем перенеслась к тому времени, когда она была с ним вместе, и он влюбленными глазами смотрел на нее.
«Ах, поскорее бы он приехал. Я так боюсь, что этого не будет! А главное: я стареюсь, вот что! Уже не будет того, что теперь есть во мне. А может быть, он нынче приедет, сейчас приедет. Может быть приехал и сидит там в гостиной. Может быть, он вчера еще приехал и я забыла». Она встала, положила гитару и пошла в гостиную. Все домашние, учителя, гувернантки и гости сидели уж за чайным столом. Люди стояли вокруг стола, – а князя Андрея не было, и была всё прежняя жизнь.
– А, вот она, – сказал Илья Андреич, увидав вошедшую Наташу. – Ну, садись ко мне. – Но Наташа остановилась подле матери, оглядываясь кругом, как будто она искала чего то.
– Мама! – проговорила она. – Дайте мне его , дайте, мама, скорее, скорее, – и опять она с трудом удержала рыдания.
Она присела к столу и послушала разговоры старших и Николая, который тоже пришел к столу. «Боже мой, Боже мой, те же лица, те же разговоры, так же папа держит чашку и дует точно так же!» думала Наташа, с ужасом чувствуя отвращение, подымавшееся в ней против всех домашних за то, что они были всё те же.
После чая Николай, Соня и Наташа пошли в диванную, в свой любимый угол, в котором всегда начинались их самые задушевные разговоры.


– Бывает с тобой, – сказала Наташа брату, когда они уселись в диванной, – бывает с тобой, что тебе кажется, что ничего не будет – ничего; что всё, что хорошее, то было? И не то что скучно, а грустно?
– Еще как! – сказал он. – У меня бывало, что всё хорошо, все веселы, а мне придет в голову, что всё это уж надоело и что умирать всем надо. Я раз в полку не пошел на гулянье, а там играла музыка… и так мне вдруг скучно стало…
– Ах, я это знаю. Знаю, знаю, – подхватила Наташа. – Я еще маленькая была, так со мной это бывало. Помнишь, раз меня за сливы наказали и вы все танцовали, а я сидела в классной и рыдала, никогда не забуду: мне и грустно было и жалко было всех, и себя, и всех всех жалко. И, главное, я не виновата была, – сказала Наташа, – ты помнишь?
– Помню, – сказал Николай. – Я помню, что я к тебе пришел потом и мне хотелось тебя утешить и, знаешь, совестно было. Ужасно мы смешные были. У меня тогда была игрушка болванчик и я его тебе отдать хотел. Ты помнишь?
– А помнишь ты, – сказала Наташа с задумчивой улыбкой, как давно, давно, мы еще совсем маленькие были, дяденька нас позвал в кабинет, еще в старом доме, а темно было – мы это пришли и вдруг там стоит…
– Арап, – докончил Николай с радостной улыбкой, – как же не помнить? Я и теперь не знаю, что это был арап, или мы во сне видели, или нам рассказывали.
– Он серый был, помнишь, и белые зубы – стоит и смотрит на нас…
– Вы помните, Соня? – спросил Николай…
– Да, да я тоже помню что то, – робко отвечала Соня…
– Я ведь спрашивала про этого арапа у папа и у мама, – сказала Наташа. – Они говорят, что никакого арапа не было. А ведь вот ты помнишь!
– Как же, как теперь помню его зубы.
– Как это странно, точно во сне было. Я это люблю.
– А помнишь, как мы катали яйца в зале и вдруг две старухи, и стали по ковру вертеться. Это было, или нет? Помнишь, как хорошо было?
– Да. А помнишь, как папенька в синей шубе на крыльце выстрелил из ружья. – Они перебирали улыбаясь с наслаждением воспоминания, не грустного старческого, а поэтического юношеского воспоминания, те впечатления из самого дальнего прошедшего, где сновидение сливается с действительностью, и тихо смеялись, радуясь чему то.
Соня, как и всегда, отстала от них, хотя воспоминания их были общие.
Соня не помнила многого из того, что они вспоминали, а и то, что она помнила, не возбуждало в ней того поэтического чувства, которое они испытывали. Она только наслаждалась их радостью, стараясь подделаться под нее.
Она приняла участие только в том, когда они вспоминали первый приезд Сони. Соня рассказала, как она боялась Николая, потому что у него на курточке были снурки, и ей няня сказала, что и ее в снурки зашьют.
– А я помню: мне сказали, что ты под капустою родилась, – сказала Наташа, – и помню, что я тогда не смела не поверить, но знала, что это не правда, и так мне неловко было.
Во время этого разговора из задней двери диванной высунулась голова горничной. – Барышня, петуха принесли, – шопотом сказала девушка.
– Не надо, Поля, вели отнести, – сказала Наташа.
В середине разговоров, шедших в диванной, Диммлер вошел в комнату и подошел к арфе, стоявшей в углу. Он снял сукно, и арфа издала фальшивый звук.
– Эдуард Карлыч, сыграйте пожалуста мой любимый Nocturiene мосье Фильда, – сказал голос старой графини из гостиной.
Диммлер взял аккорд и, обратясь к Наташе, Николаю и Соне, сказал: – Молодежь, как смирно сидит!
– Да мы философствуем, – сказала Наташа, на минуту оглянувшись, и продолжала разговор. Разговор шел теперь о сновидениях.
Диммлер начал играть. Наташа неслышно, на цыпочках, подошла к столу, взяла свечу, вынесла ее и, вернувшись, тихо села на свое место. В комнате, особенно на диване, на котором они сидели, было темно, но в большие окна падал на пол серебряный свет полного месяца.
– Знаешь, я думаю, – сказала Наташа шопотом, придвигаясь к Николаю и Соне, когда уже Диммлер кончил и всё сидел, слабо перебирая струны, видимо в нерешительности оставить, или начать что нибудь новое, – что когда так вспоминаешь, вспоминаешь, всё вспоминаешь, до того довоспоминаешься, что помнишь то, что было еще прежде, чем я была на свете…