Вавилонская математика

Поделись знанием:
Перейти к: навигация, поиск
Данная статья — часть обзора История математики.

Общие сведения

Вавилонское царство возникло в начале II тысячелетия до н. э. на территории современного Ирака, придя на смену Шумеру и Аккаду и унаследовав их развитую культуру. Просуществовало до персидского завоевания в 539 году до н. э.

Вавилоняне писали клинописными значками на глиняных табличках, которые в немалом количестве дошли до наших дней (более 500000, из них около 400 связаны с математикой). Поэтому мы имеем довольно полное представление о математических достижениях учёных Вавилонского государства. Отметим, что корни культуры вавилонян были в значительной степени унаследованы от шумеров — клинописное письмо, счётная методика и т. п.[1]

Вавилонские математические тексты носят преимущественно учебный характер. Из них видно, что вавилонская расчётная техника была намного совершеннее египетской, а круг решаемых задач существенно шире. Есть задачи на решение уравнений второй степени, геометрические прогрессии. При решении применялись пропорции, средние арифметические, проценты. Методы работы с прогрессиями были глубже, чем у египтян. Линейные и квадратные уравнения (см. Plimpton 322) решались ещё в эпоху Хаммурапи (он правил в 1793−1750 годах до н. э.); при этом использовалась геометрическая терминология (произведение ab называлось площадью, abc — объёмом, и т. д.). Многие значки для одночленов были шумерскими, из чего можно сделать вывод о древности этих алгоритмов; эти значки употреблялись как буквенные обозначения для неизвестного (в терминах современной алгебры). Встречаются также кубические уравнения и системы линейных уравнений. Венцом планиметрии была теорема Пифагора; Ван дер Варден считает, что вавилоняне открыли её между 2000 и 1786 годами до н. э.[2].

Как и в египетских текстах, излагается только алгоритм решения (на конкретных примерах), без комментариев и доказательств. Однако анализ алгоритмов показывает, что общая математическая теория у вавилонян несомненно была.

Нумерация

Шумеры и вавилоняне использовали 60-ричную позиционную систему счисления, увековеченную в нашем делении круга на 360°. Писали они, как и мы, слева направо. Однако запись необходимых 60 цифр была своеобразной. Значков для цифр было всего два, обозначим их Е (единицы) и Д (десятки); позже появился значок для нуля. Цифры от 1 до 9 изображались как Е, ЕЕ, … ЕЕЕЕЕЕЕЕЕ. Далее шли Д, ДЕ, … ДДДДДЕЕЕЕЕЕЕЕЕ (59). Таким образом, число изображалось в позиционной 60-ричной системе, а его 60-ричные цифры — в аддитивной десятичной. Аналогично записывались дроби. Для популярных дробей 1/2, 1/3 и 2/3 были специальные значки.

Греческие и средневековые европейские математики (в том числе и Коперник), для обозначения дробных частей пользовались вавилонской 60-ричной системой. Благодаря этому, мы делим час на 60 минут и минуты на 60 секунд. При этом надо отметить, что вопреки распространённому мнению, часы, минуты и секунды не использовались в Древнем Вавилоне. Вместо этого использовался двойной час длительностью 120 современных минут, а также время-градус длительностью 1360 дня (т.е. четыре минуты) и «третья часть» длительностью 313 современных секунды (хелек в современной еврейском календаре)[3].

В современной научной литературе для удобства используется компактная запись вавилонского числа, например:

4,2,10; 46,52

Расшифровывается эта запись следующим образом: 4 × 3600 + 2 × 60 + 10 + 46/60 + 52/3600

Арифметика

Для умножения применялся громоздкий комплект таблиц, отдельно для умножения на 1-20, 30…50. Деление m/n они заменяли умножением m ×(1/n), а для нахождения 1/n у них были специальные таблицы. Другие таблицы помогали возводить в степень, извлекать корни и даже находить показатель степени n, если дано число вида <math>2^n</math> (эти двоичные логарифмы использовались для подсчёта процентов по кредиту)[4].

Для вычисления квадратных корней вавилоняне открыли быстро сходящийся итерационный процесс — новое приближение для <math>\sqrt{a}</math> получалось из предыдущего по формуле[5]:

<math>x_{n+1}=\frac{1}{2}~(x_n + \frac{a}{x_n})\ </math>

Геометрия

В геометрии рассматривались те же фигуры, что и в Египте, плюс сегмент круга и усечённый конус. В ранних документах полагают <math>\pi=3</math>; позже встречается приближение 25/8 = 3,125 (у египтян 256/81 ≈ 3,1605). Встречается также и необычное правило: площадь круга есть 1/12 от квадрата длины окружности, то есть <math>\pi^2 R^2/3</math>. Впервые появляется (ещё при Хаммурапи) теорема Пифагора, причём в общем виде; она снабжалась особыми таблицами и широко применялась при решении разных задач. Вавилоняне умели вычислять площади правильных многоугольников; видимо, им был знаком принцип подобия. Для площади неправильных четырёхугольников использовалась та же приближённая формула, что и в Египте: <math>S=\fracШаблон:A+c{2} \cdot \frac {b+d}{2}</math>.

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают Гипсиклу, II век до н. э.)

Значительные достижения вавилонских математиков и астрономов стали фундаментом для науки последующих цивилизаций, и прежде всего — науки древней Греции. Всё же богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приёмов, лишённых доказательной базы. Систематический доказательный подход в математике появился только у греков.

Примечания

  1. История математики, 1970, с. 35.
  2. van der Waerden, Bartel Leendert. [books.google.com/?id=_vPuAAAAMAAJ&q=%22Pythagorean+triples%22++%22Babylonian+scribes%22+inauthor:van+inauthor:der+inauthor:Waerden&dq=%22Pythagorean+triples%22++%22Babylonian+scribes%22+inauthor:van+inauthor:der+inauthor:Waerden&cd=1 Geometry and Algebra in Ancient Civilizations]. — Springer, 1983. — ISBN 3-540-12159-5.
  3. Стр. 325 в O Neugebauer (1949). «The astronomy of Maimonides and its sources». Hebrew Union College Annual 22: 321–360.
  4. История математики, 1970, с. 37—39.
  5. История математики, 1970, с. 47.

Литература

  • Ван дер Варден. [naturalhistory.narod.ru/Person/Modern/Waerden/Nauka_1/N_1_Ogl.htm Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции]. — М.: Наука, 1959. — 456 с.
  • Веселовский И. Н. Вавилонская математика // Труды Института истории естествознания и техники. — М.: Академия наук СССР, 1955. — Вып. 5. — С. 241—304..
  • Выгодский М. Я. Арифметика и алгебра в древнем мире. — М.: Наука, 1967.
  • Глейзер Г. И. [ilib.mccme.ru/djvu/istoria/school.htm История математики в школе]. — М.: Просвещение, 1964. — 376 с.
  • Депман И. Я. [ilib.mccme.ru/djvu/istoria/depman.htm История арифметики. Пособие для учителей]. — Изд. второе. — М.: Просвещение, 1965. — 416 с.
  • История математики. С древнейших времен до начала Нового времени // [ilib.mccme.ru/djvu/istoria/istmat1.htm История математики, в трёх томах] / Под редакцией А. П. Юшкевича. — М.: Наука, 1970. — Т. I.
  • Нейгебауэр О. Точные науки в древности. М., 1968.
  • Раик А. Е. Две лекции о египетской и вавилонской математике // Историко-математические исследования. — М.: Физматгиз, 1959. — № 12. — С. 271-320.
  • Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ.
    • Том I. (1960). Том II. (1963)
  • Хрестоматия по истории математики. Арифметика и алгебра. Теория чисел. Геометрия / Под ред. А. П. Юшкевича. — М.: Просвещение, 1976. — 318 с.
  • Friberg J. [books.google.ru/books?id=1qQtWFHd8noC Unexpected links between Egyptian and Babylonian mathematics.] World Scientific, 2005.
  • Friberg J. [books.google.ru/books?id=h6GMHxORa3AC Amazing traces of a Babylonian origin in Greek mathematics.] World Scientific, 2007.

Ссылки

  • [it.stlawu.edu/~dmelvill/mesomath/ Mesopotamian Mathematics]  (англ.)
  • O’Connor, J. J. and Robertson, E. F., [www-history.mcs.st-andrews.ac.uk/HistTopics/Babylonian_mathematics.html An overview of Babylonian mathematics], MacTutor History of Mathematics, (December 2000).